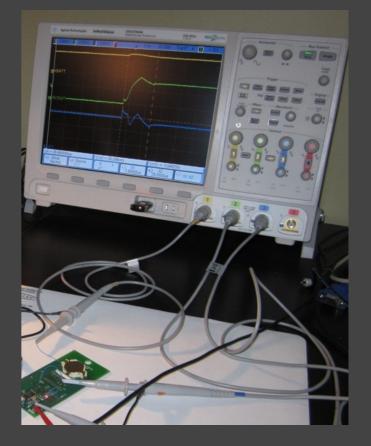

Tools of the Hardware Hacking Trade

Joe Grand Grand Idea Studio, Inc.

Finding the Right Tools for the Job

- Tools can help for design or "undesign"
- Access to tools is no longer a hurdle
- Can outsource to those with capabilities/equipment you don't have
- The key is knowing what tools are available and which one(s) are needed for a particular goal/attack

Tool Sets


- Signal Monitoring/Analysis
- Manipulation/Injection
- Imaging

Signal Monitoring / Analysis

Oscilloscope


- Provides a visual display of electrical signals and how they change over time
- Range of capabilities/features
 - Analog/digital/mixed signal, # of channels (~1-8), bandwidth, sampling rate, resolution, buffer memory, trigger capabilities, math functions, protocol decoding, probe types
- Standalone: HP/Agilent/Keysight, Tektronix, Rohde & Schwarz, Teledyne LeCroy, Rigol
- PC-based: PicoScope, USBee, BitScope

Oscilloscope: Example

- SFMTA Smart Parking Meter (2009)
 - Joe Grand, Chris Tarnovsky, Jake Appelbaum
 - Monitored meter/card communication w/ oscilloscope
 - Slight variation in signal voltage determined direction of data
 - Created custom Microchip PIC-based smartcard emulator
 - -www.grandideastudio.com/portfolio/smart-parking-meters

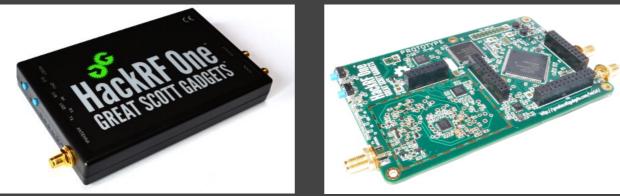
Oscilloscope: Example 2

Logic Analyzer

- Used for concurrently capturing, visualizing, and decoding large quantities of digital data
 - # of channels (~>4), sampling rate, buffer memory, trigger capabilities, protocol decoding, probe types, accessories
- Standalone: HP/Agilent/Keysight, Tektronix
- PC-based: Saleae Logic, LogicPort, USBee, LeCroy LogicStudio, DigiView
- Open: sigrok, Open Bench Logic Sniffer

•	• •		Saleae Logic 1	.2.5 Beta – [Disc	connected] – [URJtag_Detect.logi	cdata] - [12 Mł	Hz Digital, 6 MHz
		2 s : 86 ms : 130 µs	5					
3	Start Simulation	H	-1 µs	+2 μs Ι	+3 µs	+4 μs	+5 μs Ι	+6 µs
	Channel 0 🗘 🗙		1 1 1 0 1				, , ,	
	JTAG - TDO							
	Channel 1 🗘 4 군 🕨 JTAG - TCK						┠┨	┫┫┛
	Channel 2 🌣 🗙 JTAG - TDI	1 1 1	1 1 1 1 1	1 1 1 1 1 1	. 1 1 1 1	. 1 1 1 1 1 1	1 1	1 1 1 1 1

Protocol Analyzer


- Real-time, non-intrusive monitoring/capturing/decoding of complex interfaces
 - HW "man in the middle" to avoid any OS/SW overhead on host
 - Some also support data injection, power measurements
- Total Phase Beagle (USB/I2C/SPI), Komodo (CAN), LeCroy Voyager (USB 2.0/3.0), International Test Instruments (USB 2.0, PCIe 1.1), Finisar Bus Doctor (Modular)
- Open: OpenVizsla, Daisho

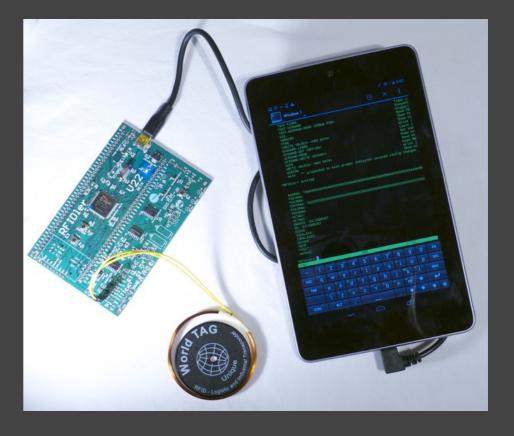
0 2 1631 F 3-10 Transfer 0 1583 F 3020	H S Packets	? Control GET ?	0.000 ms Chirp 2.055 ADDR = 0 Chirp 2.055	ms NDP 0 G	1.393 ms 248.60 bReg ET_DES0 Tim 183.94	uest CRIPTOR	Tim 4.44 w DEV	87 516 e Stamp 15 929 682 Value Windex ICE type 0x0000 D e Stamp 18 094 200		ecriptors Time Star E Descriptor 3.564 ms 4.694 530 B B B B B B B B B B B B B B B B B B B			
Transfer 1 Transfer 2 Transfer 3	S H S	Control SET Control GET Control GET	ADDR E 0 ADDR E 1 ADDR E 1		bReq	RESS Ne uest CRIPTOR	W DEV		Desc	Time Time Stamp 62.494 ms 4.882 035 216 pscriptors DEVICE Descriptor scriptors Time Stamp 4.694 530 332 Ebescriptors windex Descriptors			
ower Track							CON	CONFIGURATION Descriptor					
e e	er Ta 🗣	19.1		87 H	1 23	@. ¥	Offse 0	t Field bLength	Value 0x09	Description Descriptor size is 9 bytes			
3.20 -	0.80 -			1		-	1 2	bDescriptorType wTotalLength	0x02 0x0019	CONFIGURATION Descriptor Type 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for this configuration is 25. This includes the combined length of all the of 19 The total length of data for the combined length of all the of 19 The total length of data for the combined length of all the of 19 The total length of data for the combined length of all the of 19 The total length of data for the combined length of data f			
							4	bNuminterfaces	0x01	This configuration supports 1 interfaces			
2.80 -	0.70 -						5	b ConfigurationValue	0x01	The value 1 should be used to select this configuration			
2.40 -	0.60 -						6	iConfiguration	0x00	The device doesn't have the string descriptor describing this configuration			
2.00 -	0.50 -						7	bmAttributes	0xE0	Configuration characteristics : Bit 7: Reserved (set to one) t Bit 6: Self-powered 1 Bit 5: Ren			
1.60 -	0.40 -						8	bMaxPower	0x32	Maximum power consumption of the device in this configuration (s 100 mA)			
2 1.00 -							_	1 1 1	-				
1.20 -	0.30 -			Teres	1	all robe	aprenta	prover and	pine, family	Current			
0.80 -	0.20 -	1 La		-						Max 1.311A			
0.40 -	0.10 -	1	Tered							Mn OuA			
0.00 -	0.00	1											
Voltage (1		00	2.0		3.00	4.00	20 1.00 2.00			
(V)			5.00 s							10.00 s			
										▶◀₩□			

Software Defined Radio

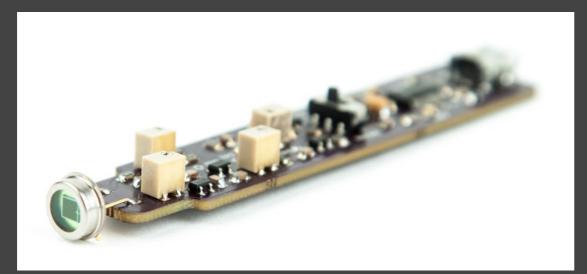
- Communication system where digital signal processing is used to implement radio/RF functions
 - Ex.: Mixers, filters, amplifiers, modulators/demodulators, detectors
 - RF front end + general purpose computer to receive/transmit arbitrary radio signals
- Primary toolset for RF/radio hacking
 - Visualize RF spectrum (spectrum analyzer)
 - Modulate/demodulate/filter raw signal
 - Decode/inject data
- Ex.: RTL-SDR, HackRF One, Blade RF, Ettus Research, LimeSDR

More Wireless

- WiFi Pineapple
 - Penetration testing/attacks
- Femtocell
 - Cellular data interception
- YARD Stick One
 - General purpose RF, < 1GHz
- Ubertooth One
 - Bluetooth/2.4GHz
- Bluefruit LE Sniffer (BLE 4.0)
 - Nordic nRF Sniffer firmware + Wireshark

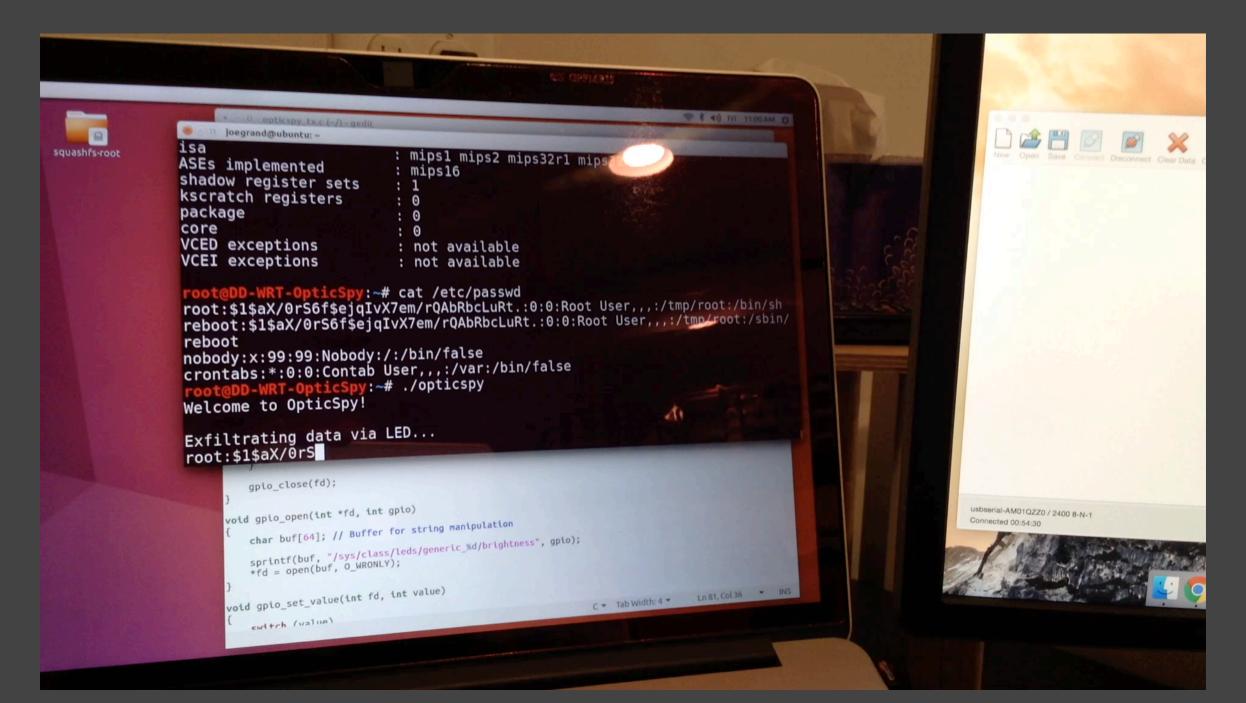


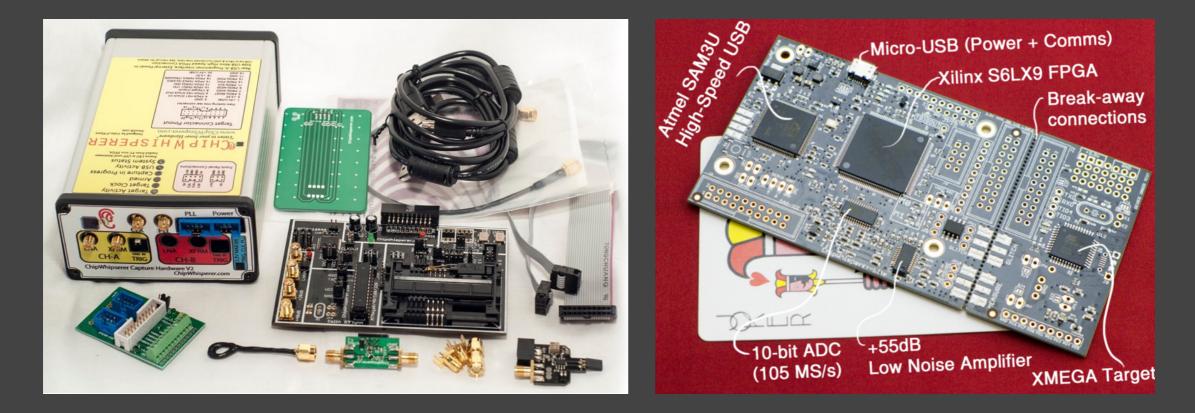
More Wireless 2


- RFIDiot, RFIDler, Proxmark3

 RFID/NFC reading/writing/emulation
- RaspBee
 - ZigBee module for Raspberry Pi
 - Command injection via custom firmware
- EZ-Wave
 - Z-Wave and Z-Wave Plus
 - Discover/interrogate/sniff
- gr-lora
 - SDR implementation of physical layer LoRa

OpticSpy


- Open source optical receiver module
 - Converts light into voltage
 - Gain and threshold adjustment via potentiometers
 - USB interface for direct connection to host PC
- Designed primarily for optoelectronic experimentation
 - Detect optical covert channels in existing devices
 - Create air-gapped data transfer functionality
 - Measure the world around you


OpticSpy: Example

TP-Link TL-WR841N (proof of concept)

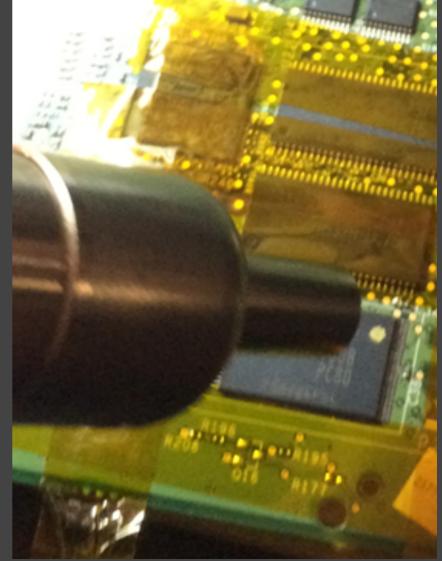
ChipWhisperer (and -Lite)

- Colin O'Flynn
- Collection of open source HW/SW tools for side channel, timing, and glitching attacks
- Supports AES-128/256 key extraction via EM/power analysis
 Correlate measured power w/ predicted power to guess byte of key
- www.chipwhisperer.com

Manipulation / Injection

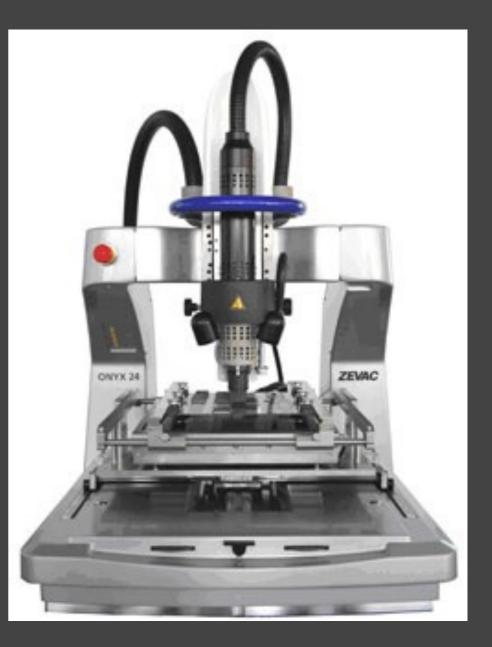
Soldering Iron

- Provides heat to melt solder that physically holds components on a circuit board
- Range from a simple stick iron to a full-fledged rework station
 Interchangeable tips, adjustable temperature, hot air reflow
- Weller, Metcal, Hakko, Aoyue, Maplin



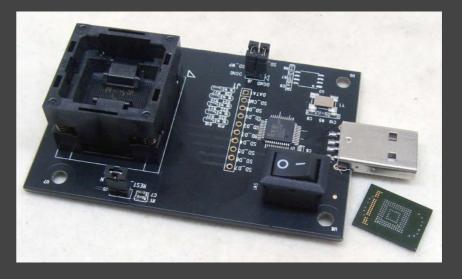
Rework Station

- Allows easier removal and reflow of individual SMD components (aka "chip off")
- Hot air convection
 - Most accessible, cost effective
 - Nozzles for different package types/ mechanical footprints
 - Difficult to focus heat on just the target component



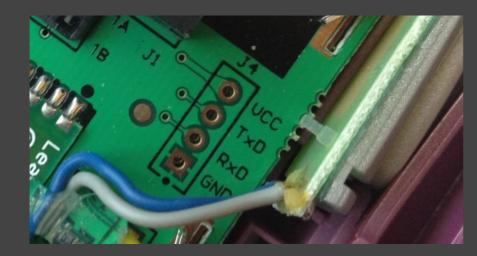
Rework Station 2

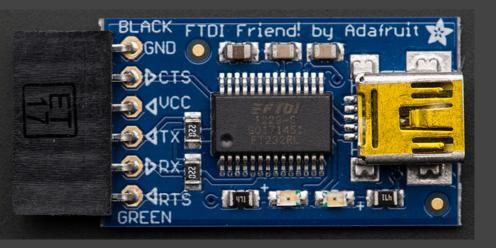
- Infrared
 - More complex, expensive systems
 - Provides focused heat on specific component
 - Many are programmable for various heating profiles
- Beware of repeated thermal cycling, which could damage IC
- Ex.: Weller, Metcal, Hakko, ZEVAC, Zephyrtronics



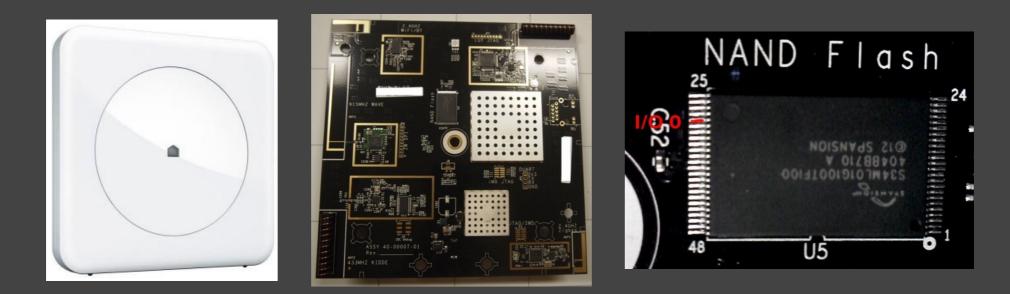
Device Programmer

- Used to read/write most devices that contain memory
 - Standalone or internal to MCU
 - Ex.: Flash, E(E)PROM, ROM, RAM, PLD/CPLD, FPGA
- Many support > 100k (!) different devices
- Some devices can be manipulated in-circuit
- Code protection mechanisms exist, may be bypassed – Security bit/fuse, PIN/password
- Xeltek, EE Tools, BP Microsystems, DediProg, MiniPro



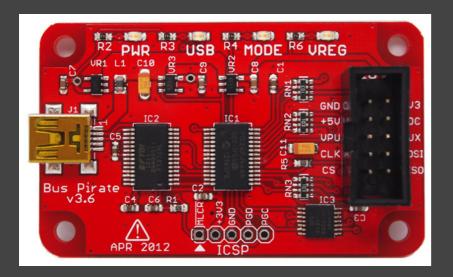


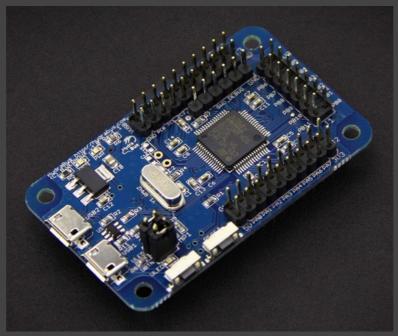
USB-to-Serial Adapter


- Many embedded systems use UART as a console
 - Boot log, debug output, bootloader menu, recovery interface, login prompt, root shell
- Converts logic level asynchronous serial to Virtual COM Port
 - \rightarrow TXD = Transmit data (to target device)
 - ← RXD = Receive data (from target device)
 - ↔ DTR, DSR, RTS, CTS, RI, DCD = Control signals (often unused)
- Easily connects to PC, Mac, Linux w/ suitable drivers

USB-to-Serial Adapter: Example

- Wink Hub
- Force bootloader into interactive shell and modify parameters to get root access
 - Pull NAND I/O 0 (pin 29) to GND while kernel loads
 - Image will fail to read properly, dropping user into shell
 - Modify boot arguments and re-start kernel boot process
 - -http://exploitee.rs/index.php/Wink_Hub%E2%80%8B %E2%80%8B

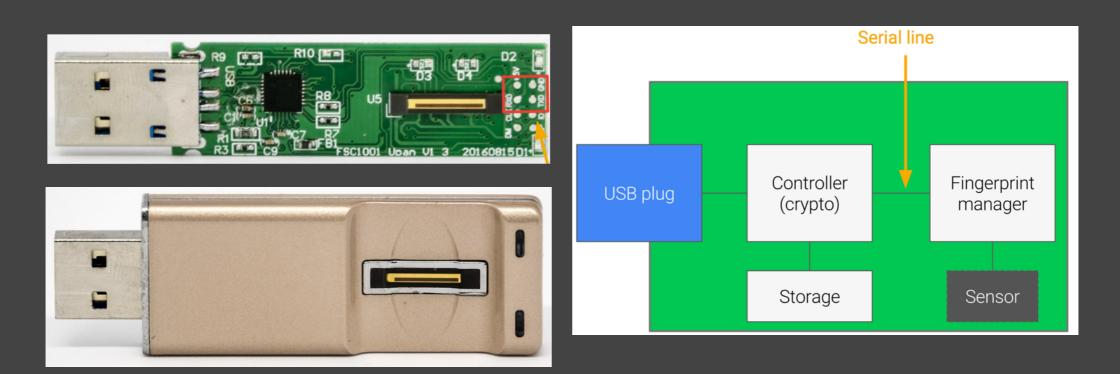

USB-to-Serial Adapter: Example 2


Falling back to updater... NAND read: device 0 offset 0x300000, size 0x400000 NAND read from offset 300000 failed -74 0 bytes read: ERROR NAND read: device 0 offset 0x2b00000, size 0x400000 NAND read from offset 2b00000 failed -74 0 bytes read: ERROR Wrong Image Format for bootm command ERROR: can't get kernel image! => 011000000 => printenv app_boot=run_appboot_args &&_nand_read \${loadaddr} app-kernel 0x00400000 && bootm \${loadaddr} app_boot_bad=run updater_args; setenv bootargs \${bootargs} badapp; nand read \${loadaddr} updater-kernel 0x00400000; bootm \${loadaddr} appboot args=setenv bootargs 'noinitrd console=ttyAM0.115200 rootfstype=ubifs ubi.mtd=5 root=ubi0:rootfs rw gpmi'; baudrate=115200 bd addr=0021CC06D0EB boot app=run app boot || run app boot bad boot getflag=mtdparts default && ubi part database && ubifsmount ubi0:database && mw 42000000 0 8 && ubifsload 42000000 DO UPDATE 1 && run boot logic boot_logic=mw 42000004 30; if cmp 42000000 42000004 1; then run boot_app; else run boot_updater; fi; boot updater=run updater boot || run updater boot bad bootargs=noinitrd console=ttyAM0,115200 rootfstype=ubifs ubi.mtd=5 root=ubi0:rootfs rw gpmi badupdater bootcmd=mtdparts default; run boot_getflag || echo Falling back to updater...; run boot_updater bootdelay=0 bootfile=uImage ethact=FEC0 ethaddr=00:04:00:00:00:00 ethprime=FEC0 loadaddr=0x42000000 mtddevname=u-boot mtddevnum=0 mtdids=nand0=gpmi-nand mtdparts=mtdparts=gpmi-nand:3m(u-boot),4m(updater-kernel),28m(updater-rootfs),8m(database),8m(app-kernel),-(app-rootfs) partition=nand0,0 Ī serialno=142301503WZD1 stderr=serial stdin=serial stdout=serial updater args=setenv bootargs 'noinitrd console=ttyAM0,115200 rootfstype=ubifs ubi.mtd=2 root=ubi0:rootfs rw gpmi'; updater_boot=run updater_args && nand read \${loadaddr} updater-kernel 0x00400000 && bootm \${loadaddr} updater_boot_bad=run appboot_args; setenv bootargs \${bootargs} badupdater; nand read \${loadaddr} app-kernel 0x00400000; bootm \${loadaddr} ver=U-Boot 2014.01-14400-gda781c6-dirty (Apr 30 2014 - 22:35:38) Environment size: 1762/16379 bytes => setenv bootargs 'noinitrd console=ttyAM0,115200 rootfstype=ubifs ubi.mtd=5 root=ubi0:rootfs rw gpmi init=/bin/sh'; => nand read \${loadaddr} app-kernel 0x00400000 && bootm \${loadaddr}

CTRL-A Z for help | 115200 8N1 | NOR | Minicom 2.7 | VT102 | Offline | ttyUSB0

Multi-Tools: Bus Pirate, HydraBus, Good/GreatFET

- Open source, general purpose hacking platforms
 - SPI, I2C, 1-Wire, CAN, LCD, JTAG, USB, MCU/FPGA/memory programming, bit bang, scriptable, etc.
 - Sniffing, injection, logic analyzer/digital decoding

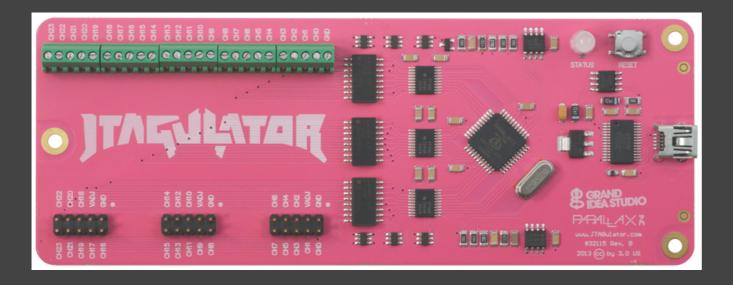


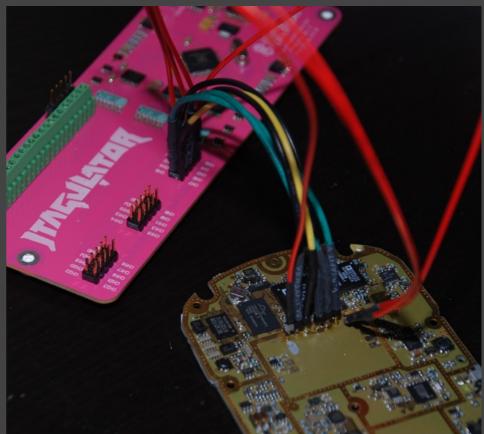
Multi-Tools: Example

- Biometric encrypted thumb drive
 - Picod, Audebert, Blumenstein, Bursztein, BH USA 2017
 - Serial interface between fingerprint scanner & MCU
 - Sniff and replay command to unlock device
 - https://cdn.elie.net/talk/attacking-encrypted-usbkeys-the-hardware-way

Debug Tools

- Off-the-shelf HW tools designed for interaction w/ target device
 - Can provide chip-level control (single step, access registers)
 - Modify memory contents
 - Extract program code or data
 - Affect device operation on-the-fly
- Either vendor-specific or industry standard (JTAG)
- Many different types available
 - Ensure tool supports your target architecture
 - Find out what vendor recommends for legitimate engineers


Debug Tools: Example


- Ford Electronic Control Units (ECUs) (2013)
 - For Charlie Miller & Chris Valasek
 - Complete firmware extraction led to understanding typical CAN traffic/functionality and arbitrary code execution
 - -http://illmatics.com/car_hacking.pdf
 - Used standard, off-the-shelf development tools
 - Freescale CodeWarrior for S12(X) v5.1 + P&E Multilink USB Rev. C

Debug Tools: JTAGulator

- Open source tool to assist with discovery of on-chip program/ debug interfaces
- Currently detects JTAG & UART/asynchronous serial
- Supports up to 24 connections to unknown points on target circuit board, adjustable target voltage (1.2V-3.3V), input protection, firmware upgradable

Debug Tools: JTAG HW/SW

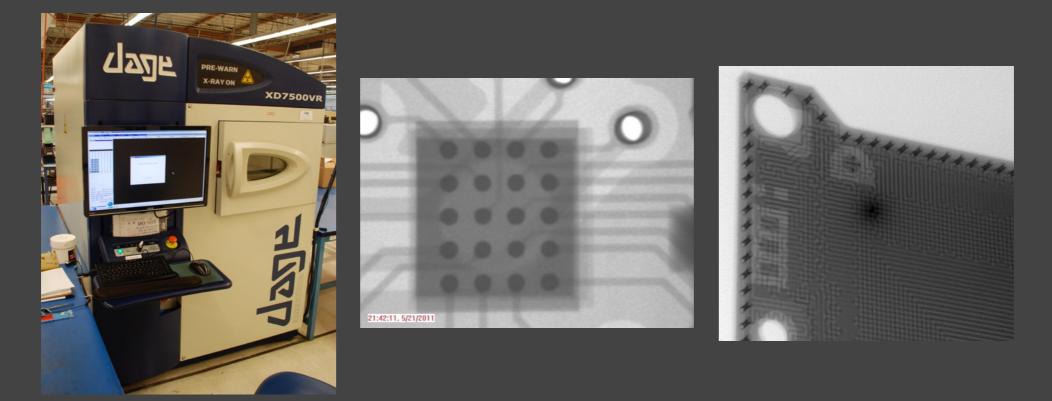
- Bus Blaster
- FT232H Breakout Board
- Black Magic Probe
- SEGGER J-Link
- OpenOCD
- UrJTAG

🔤 OpenOCD

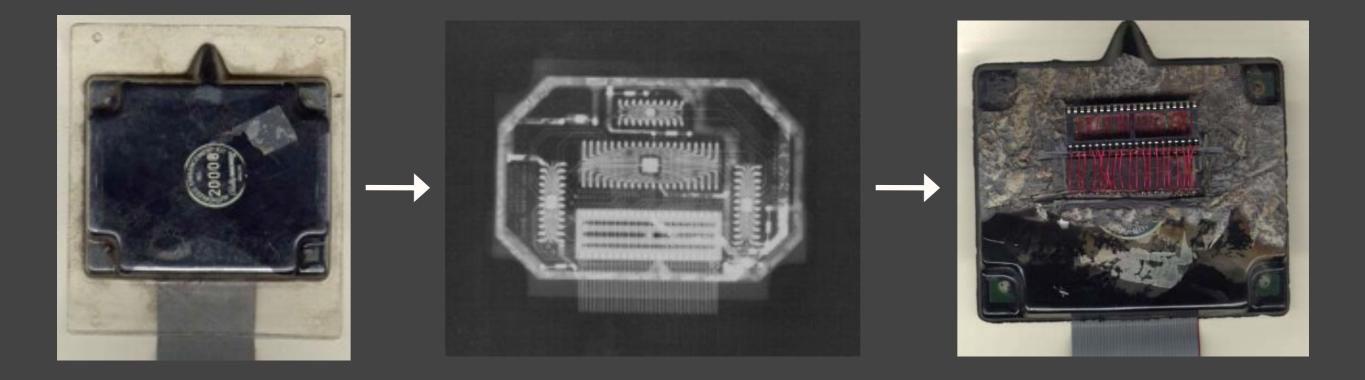
Open On-Chip Debugger 0.6.0 (2012-09-07-10:44) Licensed under GNU GPL v2 For bug reports, read http://openocd.sourceforge.net/doc/doxygen/bugs.html adapter speed: 1000 kHz srst_only separate srst_nogate srst_open_drain Info : clock speed 1000 kHz Info : stm32f0x.cpu: hardware has 4 breakpoints, 2 watchpoints Info : accepting 'gdb' connection from 3333 Info : device id = 0x20006440 Info : flash size = 64kbytes Warn : acknowledgment received, but no packet pending undefined debug reason 6 - target needs reset target state: halted target halted due to debug-request, current mode: Thread xPSR: 0xc1000000 pc: 0x08000124 msp: 0x20002000 target state: halted target halted due to breakpoint, current mode: Thread xPSR: 0xc1000000 pc: 0x200003a msp: 0x20002000

Debug Tools: JTAG Example

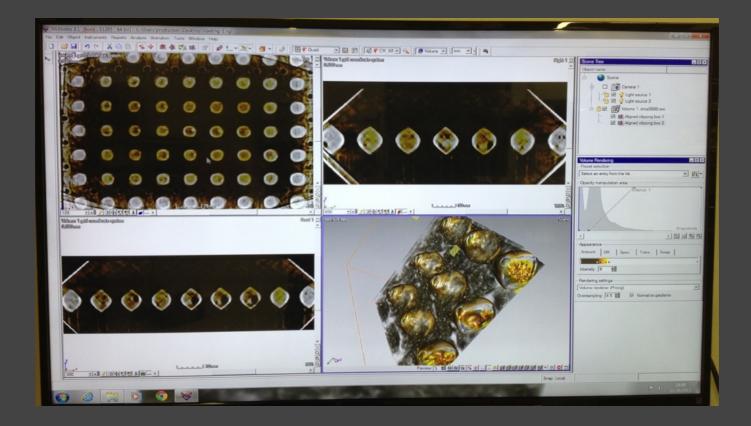
- Linux ACL Check Patch
 - JTAG to Root: 5 Ways, FitzPatrick & King, BSides PDX 2015
 - https://github.com/syncsrc/jtagsploitation


Activities 📐 Terminal 👻	Wed 22:14		<0 ↔
SCRIPTS		[screen 0; ttyUSB0]	
<pre>[contrib]\$ less galileo_demo.svf []</pre>	<pre>[18.05742 05:49:bb [0K] Sta tent Storage [18.12725 to flush ru</pre>	arted Target Communication Framewor 25] enp0s20f6: device MAC address 9 arted Trigger Flushing of Journal t 25. 26. 27. 28. 29. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20	3:4f:ee: p Persis request rk ttyS1 DEV_UP):
OpenOCD Server		matt@iluvatar:/tmp	×
File Edit View Search Terminal Help [bin]\$ sudo ./openocd -f ./interface/fruit.cfg -f ./board/quark_x10xx_board.cfg [libavfilter 5 libavresample 2 libswscale 3 libswresample 1	ch Terminal Help 5. 4.100 / 56. 4.100 5. 11.102 / 5. 11.102 2. 1. 0 / 2. 1. 0 3. 1.101 / 3. 1.101 1. 1.100 / 1. 1.100 3. 3.100 / 53. 3.100	I

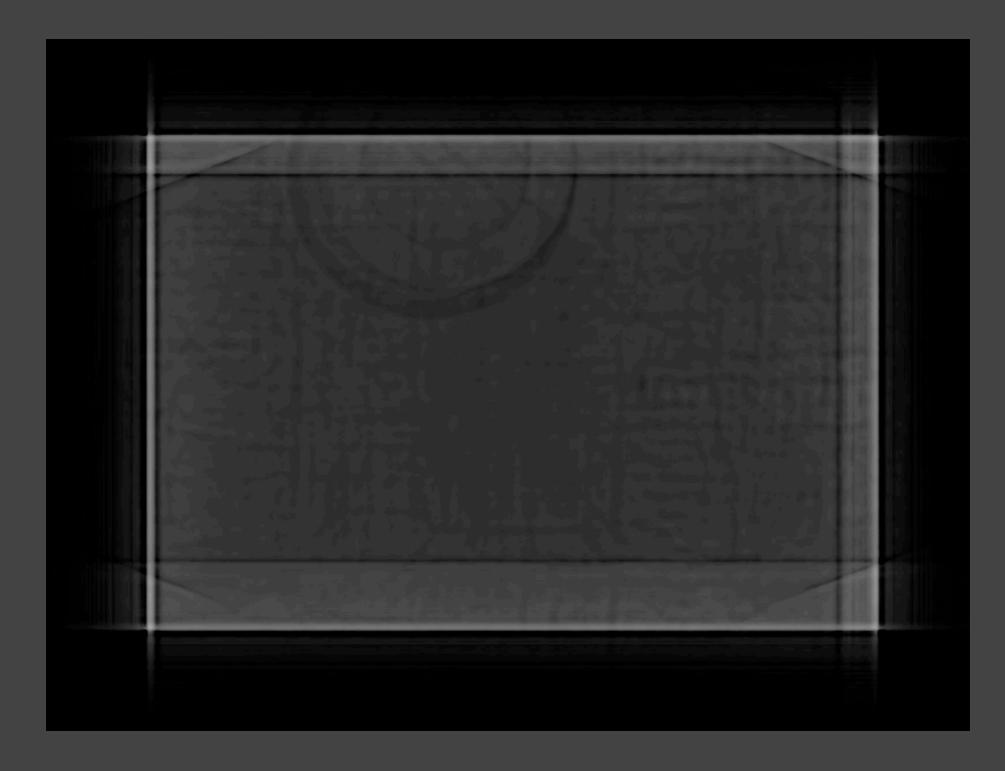
Imaging


X-Ray (2D)

- X-rays passed through target and received on detector
 - All materials absorb radiation differently depending on density, atomic number, and thickness
- Provides a composite image of all layers in target
 - Quality inspection, failure analysis, fabrication/assembly techniques, component location, hidden/embedded features, defeating encapsulation


X-Ray (2D): Example

- Pac Man Plus Upgrade Module
 - Official conversion kit produced by Bally/Midway, 1982
 - Eventually defeated/reverse engineered by Clay Cowgill, 2000
 - www.multigame.com/pacplus.html


X-Ray (3D/CT)

- Computed Tomography (CT)
 - A series of 2D X-ray images post-processed to create crosssectional slices of the target
 - X-ray beam rotated 360° in a single axis around the target
 - Post-processing results in 2D slices that can be viewed in any plane
 - Can be manipulated with 3D modeling software

X-Ray (3D/CT): Example

What Now?

- Create a hardware hacking lab (if you haven't already)
- Keep an eye out for new tools by hackers and industry
- Collaborate with others who may have complementary skills/tools
- Use these tools to validate your product's security or to better understand attack techniques

Thanks for your time!