"Smart" Parking Meter Implementations, Globalism, and You

Black Hat USA 2009

Joe Grand aka YMM, Grand Idea Studio, Inc. Jacob Appelbaum, Noisebridge Chris Tarnovsky, Flylogic Engineering

Joe Grand

- Electrical engineer
- Hardware hacker

- Grand Idea Studio: Product development & licensing, consumer devices and electronics modules for hobbyists
- Member of the L0pht hacker think-tank in 1990s
- Prior security work includes numerous USB authentication token & PDA vulnerabilities/ forensics

Jacob Appelbaum

Developer for The Tor Project

• cDc member

 Founding member of Noisebridge hacker space in San Francisco

 Notable work includes Cold Boot Attacks, Rogue CA Certificate creation, Reversing File Vault

Chris Tarnovsky

- Flylogic Engineering: Security analysis of silicon die and semiconductor devices
- Early satellite TV hacking of smartcard-based systems
- Recent work includes glitching attacks on smartcards using sewing needles

Why Parking Meters?

- We take these systems for granted and rely heavily on them, so they deserve a review
- Many U.S. cities are spending millions of dollars deploying "smart" electronic systems
 - Ex.: San Francisco, 2003, \$35 million pilot program to replace 23,000 mechanical meters
 - Others include Atlanta, Boston, Chicago, Los Angeles, New York, Philadelphia, Portland, San Diego
- Is proper security due diligence really being done by parking meter vendors before implementation?

Why Parking Meters? 2

- Parking industry generates \$28 billion annually
- Where there's money, there's risk for fraud and abuse
- Attacks/breaches can have serious implications
 - Fiscal
 - Legal
 - Social

Our Goals

- Understand the current state of (un)fare collection infrastructure
- Demonstrate attacks, explain potential weaknesses, present fixes
- Educate attendees on the hardware hacking process
- Case study: San Francisco Municipal Transportation Agency (MTA)

Fare Collection Infrastructure

- Parking meters
 - Single space
 - Multiple space
- Audit log retrieval
- Coin/payment retrieval
- Maintenance/repair
- Intentional role separation/distribution of trust

Parking Meter Technology

- Pure mechanical replaced with hybrid electromechanical in early 1990s
 - Mechanical coin slot
 - Minimal electronics used for timekeeping and administrator access (audit, debug, programming?)
- Now, we're seeing pure electronic "smart" systems
 - Microprocessor, memory, user interface
 - Has potential for problems like any other hardwarebased embedded system

Parking Meter Technology 2

- User Interfaces
 - Coin
 - Smartcard
 - Credit card
- Administrator Interfaces
 - Coin
 - Smartcard
 - Infrared
 - Wireless (RF, GPRS)
 - Other (Serial via key, etc.)

Austin, TX

Chicago, IL

Vancouver, BC, Canada

Jerusalem, Israel

Prior Problems and/or Failures

New York City reset via infrared (universal remote control), 2001, http://tinyurl.com/mae3g8

- San Diego stored value card by HIkari,
 2004, www.uninformed.org/?v=1&a=6&t=txt
- Chicago multi-space failures, June 2009
 - Firmware bug or intentional social disobedience?
 - http://tinyurl.com/nt7g19
 - http://theexpiredmeter.com/?p=3081

General Process

- Attack postulation
- Information gathering
- Hardware analysis
- Firmware reverse engineering
- Smartcard analysis

Attack Postulations

- Covert channels/message passing via LCD
- Meter-to-meter virus propagation via RF
- Denial-of-service
 - Set meter to "Out of Order"
 - Destruction of smartcard or coin processing circuitry/fuses via ESD
 - Cause a legitimate user to be added to fraud blocklist (if used)

Attack Postulations 2

- Immediate deduction of credit
 - Ex.: Cause a targeted law-abiding citizen to receive a ticket
- Audit log retrieval/modification
- Changing time/date
 - Ex.: Every day is Sunday, Sunday!
- Unlimited payment via smartcard

Information Gathering

- Social engineering
- Crawling the Internet for specific information
 - Product specifications, design documents, etc.
 - What is the core business competency?
 - Do they have technical troubles?
- Dumpster diving
- Acquire target hardware
 - Purchase, borrow, or ask the vendor

Hardware Analysis

- Meter hardware and electronics disassembly
- Component and subsystem identification
- Gives us clues about design techniques, potential attacks, and meter functionality
- Typically there are similarities between older and newer designs
 - Even between competing products
- Explored a selection of single space meters
 - All purchased on eBay, prices range from \$0.99 to \$500
 - * Duncan EMM 7700
 - * POM APM
 - * MacKay Guardian

Meter Disassembly: Duncan EMM 7700

Meter Disassembly: Duncan EMM 7700 2

Meter Disassembly: Duncan EMM 7700 3

Meter Disassembly: Duncan EMM 7700 4

Firmware Analysis

- Extract program code/data from onboard memory devices (Flash or ROM)
- Quick run through w/ strings and hex editor to pick most interesting area to begin with
- Disassembly and reverse engineering
- Gives clues to possible entry/access points to administrative menus or ideas of further attacks

Smartcard Analysis

- Communications monitoring
- Protocol decoding and emulation
- Silicon die analysis (if resources allow)

Case Study: San Francisco MTA

Case Study: San Francisco MTA

Case Study: San Francisco MTA Introduction

- Part of a \$35 million pilot program to replace 23,000 mechanical meters in 2003
- City is considering adding more meters to fill every available parking spot
 - 320,000 of them!
 - http://tinyurl.com/nhpgzm
- Infrastructure currently comprised of MacKay Guardian XLE meters

Case Study: San Francisco MTA Introduction 2

- Stored value smart card
 - \$20 or \$50 quantities
 - Can purchase online with credit card or in cash from selected locations
- Easy to replay transaction w/ modified data to obtain unlimited parking
 - Determined solely by looking at oscilloscope captures of smartcard transactions
 - Succeeded in three days

Case Study: San Francisco MTA Process

- Information Gathering
- Smartcard & Silicon Die Analysis
 - Treated as a black box attack, no meter required

Case Study: San Francisco MTA Caveats

- Released code is solely for educational purposes
 - Commands/data will be changed to prevent fraud against SFMTA
 - The goal is to show how attack was successful without putting any company at risk
 - Get it from www.grandideastudio.com/ portfolio/smart-parking-meters/

Case Study: San Francisco MTA Information Gathering

- A chance encounter w/ Department of Parking & Transportation technician on the streets of SF
 - Ask smart, but technically awkward questions to elicit corrections
- Crawling the Internet for specific information
 - Product specifications, design documents, etc.
 - What is the core business competency?
 - Do they have technical troubles?

Case Study: San Francisco MTA They Do Have Technical Troubles!

```
# From: xxx <xxx at jjmackay dot ca>
# Date: Wed, 14 Mar 2001 10:27:29 -0400
I am learning how to use CVS and as part of this process I set up a test
repository to 'play' with.
D:\src\working\epurse\cvstest>cygcheck -s -v -r -h
Cygnus Win95/NT Configuration Diagnostics
Current System Time: Wed Mar 14 09:39:50 2001
Win9X Ver 4.10 build 67766446 A
Path: /cygdrive/c/NOVELL/CLIENT32
       /cygdrive/c/WINDOWS
       /cygdrive/c/WINDOWS/COMMAND
       /usr/bin
       /cygdrive/c/JJMACKAY/MET TALK
       /cygdrive/c/JJMACKAY/UTILITY
GEMPLUS LIB PATH = `C:\WINDOWS\GEMPLUS'
Found: C:\cygwin\bin\gcc.exe
Found: C:\cygwin\bin\gdb.exe
xxx, Sr. Software Designer
```

Case Study: San Francisco MTA Silicon Die Analysis

- Purchased and decapsulated multiple cards to look for clues of manufacturer and functionality
- Decapsulation process for smartcards
 - I. Remove plastic surrounding the die (usually w/acetone)
 - 2. Throw die into small Pyrex of heated Fuming Nitric Acid (HNO3)
 - 3. Rinse in acetone
 - 4. Glue die into a ceramic DIP package (for probing)
 - 5. If part is for analysis, prevent scratching!

Case Study: San Francisco MTA Silicon Die Analysis 2

- Visually identified that two different smartcard types exist
 - Gemplus GemClub-Memo (ASIC)
 - 8051 microcontroller emulating GemClub-Memo
- Dependent on card serial number
 - Older cards are ASIC, newer cards are MCU
- Microcontroller has potential for hidden/ undocumented commands
 - One could retrieve the code from the card and reverse engineer (we didn't)

Case Study: San Francisco MTA Silicon Die Analysis 3

Case Study: San Francisco MTA ISO7816 Overview

- International specification for smartcards
- Multiple sections
 - ISO7816-1: Physical Characteristics
 - ISO7816-2: Dimensions and Locations of Contacts
 - ISO7816-3: Electronic Signals and Transmissions Protocols
 - ...and many more!
- http://en.wikipedia.org/wiki/ISO/IEC_7816

Case Study: San Francisco MTA ISO7816 Overview 2

Case Study: San Francisco MTA ISO7816 Overview 3

- Transmission Protocols
 - Asynchronous
 - No external clock needed ala RS232
 - T=0: Half-duplex character transmission
 - T=I: Half-duplex block transmission
 - Operates at a set baud rate (ex.: 9600bps)
 - Uses APDU (Application Protocol Data Unit) protocol
 - Ex.: Processor-based, Java, PKI, SIM cards
 - Synchronous
 - Data shifted in/out in relation to CLK ala I2C/SPI
 - Ex.: "Dumb" stored value/memory cards

Case Study: San Francisco MTA Communications Monitoring

- Used "shim" between smartcard and meter
 - Unpopulated Season 2 Interface
- Monitored I/O transaction w/ digital oscilloscope
- Asynchronous serial data @ 9600, 8EI captured and decoded
 - Correct baud rate determined by measuring bit width on scope

Case Study: San Francisco MTA Communications Monitoring 2

Case Study: San Francisco MTA Protocol Decoding

- Captured multiple transactions to gather clues on operation
 - Different valued cards
 - Different serial numbers
- Based on what values changed per transaction & per card, could narrow down what data meant what
- Decoded transaction functionality by hand, no computer needed!

Case Study: San Francisco MTA Initialization

<u>Meter</u>

Reset

Read Address 0

Read Address |

Read Address 2

Read Address 3

Read Address 4

<u>Card</u>

[4 byte responses unless noted]

ATR

Manufacturer ID

Serial #

Constant

Unknown (8)

[Used for meter to calculate CSCI password]

Case Study: San Francisco MTA Initialization 2

<u>Meter</u>

Read CSCI
Ratification Counter

CSCI Password

[Password calculated by meter and sent to card for authentication]

Read Address 14

Read CTCI
Card Transaction Counter

<u>Card</u>

[4 byte responses unless noted]

0

Password OK (2)

CTCI [value varies]

Case Study: San Francisco MTA Initialization 3

<u>Meter</u>

Read Balance 2

<u>Card</u>

[4 byte responses unless noted]

Maximum Card Value

Ex.: $0 \times FF FF FO AF = 20

Ex.: 0xFF FF FI 27 = \$50

Read CTCI

Card Transaction Counter

CTCI [value varies]

Case Study: San Francisco MTA Deduction of Single Unit (\$0.25)

Meter Update Balance I Current Value AI Current Value A2 Card [4 byte responses unless noted] OK (2) OK (2)

- By updating the Balance I Value (8 bytes), CTCI automatically increments
- CTCI is the only value that changes during the entire transaction!

Case Study: San Francisco MTA Computation of Card Value

- Maximum card value = (Balance 2 95d)
 - Ex.: \$0AF (175d) 95d = 80 units
 - \bullet 80 * 0.25 = \$20
 - Ex.: \$127 (295d) 95d = 200 units
 - 200 * 0.25 = \$50

Case Study: San Francisco MTA Protocol Emulation

- First attempt to replay exact transaction captured w/ scope
 - Microchip PIC I 6F648A
 - Written in C using MPLAB + CCS PIC-C
 - Challenge for code to be fast enough and incorporate required short delays while still be readable/useful C

Case Study: San Francisco MTA Protocol Emulation 2

```
000
                                                                                                c card.c
     <No selected symbol>
      #include "card.h"
                                                                        Code snipper
      void main (void)
          port_b_pullups(FALSE); // disable pbrt B pull-ups
  6
          atr();
          manufacturer();
  9
          issuer();
          current_value();
 10
 11
 12
          while(1)
 13
 14
              issuer();
 15
              deposit_coin();
 16
 17
      void atr(void)
 20
          delay_ms(1);
 21
 22
          putc(0x3B);delay_us(170); // guard time
          putc(0x02);delay_us(170);
 24
          putc(0x53);delay_us(170);
          putc(0x01);
 26
 27
 28
      void manufacturer(void)
 31
          output_float(SIO);
 32
          while (getc() != 0x80);
          while (getc() != 0xBE);
 33
          while (getc() != 0x00);
 34
          while (getc() != 0x00);
 35
          while (getc() != 0x04);
 36
          delay_us(500);
 38
          putc(0xBE);delay_us(170); // guard time
          putc(0x7A); delay_us(170);
          putc(0x11);delay_us(170);
 40
          putc(0x11);delay_us(170);
 41
          putc(0xFF);delay_us(170);
 43
          putc(0x90);delay_us(170);
          putc(0x00);
```

Case Study: San Francisco MTA Protocol Emulation 3

- Then, modified code to change various values until success
 - Knowing how "remaining value" is computed, what happens if we change Balance 2 to \$FFF?
 - Ex.: \$FFF (4095d) 95d = 4000 units?
 - Meter believes card has the maximum possible value
 - Could also have the code never increment CTCI so stored value never decreases

Case Study: San Francisco MTA Protocol Emulation 4

- Ported code to Silver Card (PIC16F877based smart card)
 - PIC-based smartcards have been popular for satellite TV hackers for years, so required equipment is readily available
 - Ex.: http://tinyurl.com/mqphcj

Case Study: San Francisco MTA Hardware Evolution

1) Custom PCB + shim

2) MM2 card w/ external PIC

3) Silver Card PIC16F877 smartcard

Case Study: San Francisco MTA Results

Case Study: San Francisco MTA Recommended Fixes

- Daily audit log/serial number correlation/ blocklisting
 - There are serious privacy implications with this...
- Reduce number of access methods
 - Every access point is an avenue of attack
 - Ex.: MacKay Guardian XLE specification requires no fewer than five
- Incorporate anti-tamper mechanisms into parking meter circuitry
 - Will prevent easy access to firmware and other internals

Case Study: San Francisco MTA Recommended Fixes 2

- Abandon the use of an offline system
 - An isolated meter is no match for a dedicated attacker
- Meters could communicate with a mothership
 - Incorporate digital signatures for all transactions
 - New attacks may present themselves...
- See David Chaum's work on anonymous ecash
 - http://en.wikipedia.org/wiki/Ecash
 - Trust and verify: Don't contribute to counterfeiting

Final Thoughts

- Systems need to be fully tested before deployment
 - Why is hardware always inherently trusted?
- We are barely scratching the surface of what can be done against parking meters
 - Different cities have different implementations
 - Different vendors have different designs and exploitable features
- Parking meters are like real-world DRM
 - Good luck with that.
- Consider a world without parking meters
 - Ride a bicycle!

Thank You

Jennifer Granick

Q&A

