Can You Really Trust Hardware? Exploring Security Problems in Hardware Devices

The Black Hat Briefings 2005

Joe Grand
Grand Idea Studio, Inc.
joe@grandideastudio.com

Goals

- Become familiar with classes of hardware attacks
- Learn from history
 - Explore prior attacks against hardware products
- Gain knowledge to attack/analyze new devices
- Understand and accept that hardware-based security is extremely difficult
 - Just because it's a hardware product does not mean it's secure

Threat Vectors

- Interception (or Eavesdropping)
 - Gain access to protected information without opening the product
- Interruption (or Fault Generation)
 - Preventing the product from functioning normally
- Modification
 - Tampering with the product, typically invasive
- Fabrication/Man-in-the-Middle
 - Creating counterfeit assets of a product

Attack Goals

- Competition (or Cloning)
 - Specific IP theft to gain marketplace advantage
- Theft-of-Service
 - Obtaining service for free that normally requires \$\$\$
- User Authentication (or Spoofing)
 - Forging a user's identity to gain access to a system
- Privilege Escalation (or Feature Unlocking)
 - Gaining increased command of a system or unlocking hidden/undocumented features

Thinking Like An Attacker...

Attacks Against...

- Access control
 - Biometrics
 - Authentication tokens
 - RFID
- Network appliances
 - Cryptographic accelerators
 - Wireless access points
 - Network adapters/NICs
 - PDAs/Mobile devices

Biometrics

- Measure and analyze human body characteristics in order to authenticate identity
 - Ex.: Fingerprint, hand geometry, eye pattern (iris or retina), facial features, or voice or written signature
- Considered more secure than systems that use passwords, but physical characteristics are hard to keep secret
 - Ex.: Fingerprint lifted from keyboard, picture can be taken of a face, voice can be recorded

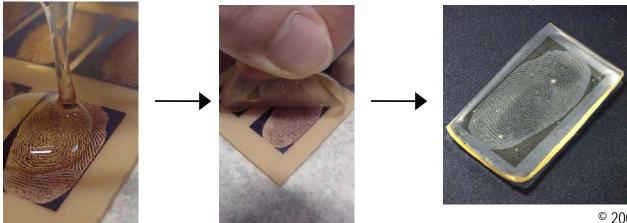
Biometrics 2

- Usually composed of two or three components:
 - Biometric device, application software, back-end server
- Potential problems with storage of characteristics if not implemented properly
 - Biometric data could be stolen and/or cloned
 - Most glossy marketing sheets state they store "a set of unique data points" that cannot be reverse engineered
- Some characteristics can change over time
 - Ex.: Glaucoma medicine changes retina color and vein pattern, scars on a finger, etc.

Biometrics 3

- If fingerprint is stolen, you only have nine more to use...
 - Gives a whole new meaning to "hacking" and "digital theft"!

Biometrics: Fingerprint Cloning


- Current biometric fingerprint systems (optical & capacitive) are notoriously simple to bypass
- In May 2002, Tsutomu Matsumoto presented methods to defeat scanners by using a fake finger molded out of gelatin
 - http://cryptome.org/gummy.htm
- Defeated 11 different fingerprint systems 80% of the time

Biometrics: Fingerprint Cloning 2

- 1. Obtained latent fingerprint from a glass
- 2. Enhanced with cyanoacrylate adhesive (super glue) and photographed with digital camera
- Edited contrast in Photoshop and printed onto transparency sheet
- Use transparency to etch fingerprint onto photosensitive printed circuit board
- 5. Created gelatin finger from circuit board "mold"

Biometrics: Fingerprint Cloning 3

- Gelatin finger also fools capacitive sensors due to moisture and resistance characteristics similar to a real human finger
- Unlikely that gelatin finger will work on RF fingerprint scanning technologies
 - Used to capture fingerprint image below the surface layer of the skin

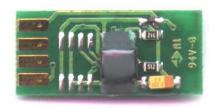
Authentication Tokens

- Used to provide identity in order to gain access to an asset
 - How do you prove you are who you say you are?
- Typically used in combination with a password
 - Two-factor
 - Something you know and something you have
- Common security-related uses
 - Private data storage (credentials, crypto keys, certs, passwords)
 - One-time-password generation

USB Authentication Token: Rainbow iKey 1000 (old revision)

- All data stored in easily accessible, unprotected Serial EEPROM
- Can gain full administrator access to device by generating a new key based on weak algorithm
 - "Attacks on and Countermeasures for USB Hardware Token Devices," www.grandideastudio.com/files/security/tokens/usb_hardware_token.pdf
- Devices created after November 1999 have been updated to prevent these attacks

USB Authentication Token 2: Rainbow iKey 1000 (old revision)


- Extremely easy to open with X-ACTO knife
 - Under 30 seconds with no visible damage

- Can attach probes to the unpopulated footprint and read the "encapsulated" EEPROM
 - 24LC64 uses I²C bus (serial clock and data)

USB Authentication Token 3: Rainbow iKey 1000 (old revision)

- MKEY (Master Key) serves as administrative password (gives full access to device)
 - 256 character ASCII, default = "rainbow"
 - Hashed MKEY stored at address 0x8

USB Authentication Token 4: Rainbow iKey 1000 (old revision)

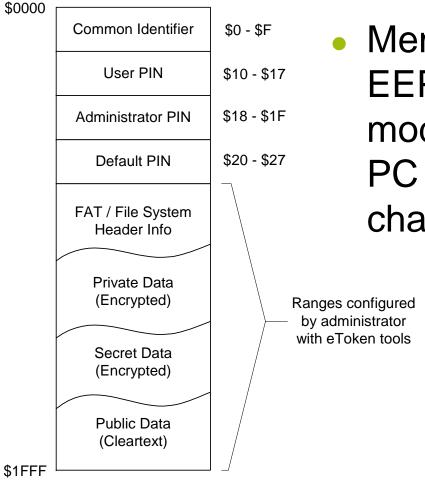
```
Byte # 1 2 3 4 5 6 7 8
A, Hashed MKEY value, md5("rainbow") = CD13 B6A6 AF66 FB77
B, Obfuscated MKEY value in EEPROM = D2DD B960 B0D0 F499
B_1 = A_1 \text{ XOR } 0 \times 1 \text{F}
B_2 = A_2 \text{ XOR } (A_1 + 0 \times 01)
B_3 = A_3 \text{ XOR } 0 \times 0 \text{F}
B_4 = A_4 \text{ XOR } (A_3 + 0 \times 10)
B_5 = A_5 \text{ XOR } 0x1F
B_6 = A_6 \text{ XOR } (A_5 + 0 \times 0.7)
B_7 = A_7 \text{ XOR } 0 \times 0 \text{F}
B_8 = A_8 \text{ XOR } (A_7 + 0xF3)
Example: 0xD2 = 0xCD XOR 0x1F
               0xDD = 0x13 XOR (0xCD + 0x01) \dots
```

USB Authentication Token 5: Aladdin eToken 3.3.3.x

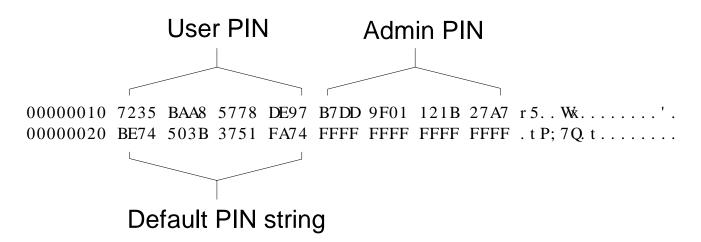
- All data stored in easily accessible, unprotected Serial EEPROM
- Can gain full user access to device by rewriting user PIN with default PIN
 - "Attacks on and Countermeasures for USB Hardware Token Devices," www.grandideastudio.com/files/ security/tokens/usb_hardware_token.pdf
- Aladdin states that 3.3.3.x was not a released product

USB Authentication Token 6: Aladdin eToken 3.3.3.x

 Can use heat gun to soften glue around housing and split open with X-ACTO knife



- Can attach probes to the EEPROM and read with standard device programmer
 - Atmel 25640 uses SPI bus (serial clock, data in, data out)


USB Authentication Token 7: Aladdin eToken 3.3.3.x

 Memory map of Serial EEPROM obtained by modifying eToken data on PC and viewing content changes in EEPROM

8

USB Authentication Token 8: Aladdin eToken 3.3.3.x

Initial memory dump, User and Admin PINs set to unknown values

```
00000010 BE74 503B 3751 FA74 B7DD 9F01 121B 27A7 .t P; 7Q. t . . . . . ' . 00000020 BE74 503B 3751 FA74 FFFF FFFF FFFF FFFF .t P; 7Q. t . . . . . .
```

Memory dump, after modification, with User PIN now set to default

Dallas Semiconductor iButton

- Designed to replace barcodes, RFID tags, magnetic stripes, proximity and smart cards
- Physical features: Stainless steel, waterproof, rugged, wearable, tamper responsive
- 1-wire Interface
 - Actually, 2 wires (clock/data and ground)
 - Parasitically-powered
 - 16kbps (standard) and 142kbps (overdrive)
- Unique 64-bit ID (non-secret) for each device

- 1,152 bits of non-volatile memory split into three 384-bit (48-byte) containers known as "subkeys"
- Each subkey is protected by an independent 8byte password
- Only the correct password will grant access to the data stored within each subkey area and return the 48-bytes
 - Incorrect password supposed to return 48-bytes of "random" data
- Commonly used for cashless transactions (e.g., parking meters, public transportation) and access control

 Initial experiments with iButton Viewer (part of free iButton-TMEX SDK) showed that "random" response is actually based on input password

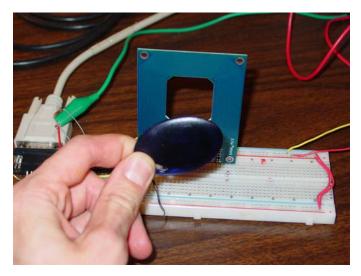
🖺 DS1991 (DS1205):	F600000089D8B802	×
<u>F</u> ile <u>V</u> iew <u>H</u> elp		
■ 1-Wire Net Activity		
Scratchpad		
This is the scratchpad area of the DS1991. This is public.		
Secure Subkeys		
ID: 1	Password: hello	
Øőû&KF.₃Ì.h,"÷ó+⊭flkÐ#ô!.´¬/r.îê,,§¸ûVç.ÁŸe@		
ID: 2	Password: hello	
Øőû&KF.₃Ì.h,"÷ó+⊯flkÐ-	—#ô!.´¬/r.îê,,§¸ûVç.ÁYe@	
ID: 3	Password:	_
This subkey area is unprotected.		
DS9097U <com1></com1>		Secure Key

- Based on input password and 12kB constant block
 - Constant for all DS1991 devices
 - Can precompute the 48-byte return value expected for an incorrect password
 - If return value does not match, must be the correct password and subkey data
- Can perform dictionary attack to access protected subkey data
 - "DS1991 MultiKey iButton Dictionary Attack Vulnerability," www.grandideastudio.com/files/ security/tokens/ds1991_ibutton_advisory.txt

- How to precompute the expected incorrect password" string?
 - For any given character (256 possibilities), a unique
 48-byte response is returned from iButton
 - Created application to set each single-byte password and monitor serial port for response
 - Trial and error to determine how response was generated for longer length passwords (XORs and shifts!)

- Generic term for non-contacting technologies that use radio waves to automatically identify people or objects
- Has been available for decades, but just now becoming popular for mainstream
 - Robotics navigation, inventory (human?) tracking, access control, automatic identification, payment systems, and car immobilization

- Most common use is to store unique serial number (read-only) on a microchip that is attached to an antenna
 - Combined antenna and microchip called a "transponder" or "tag"
- Typical RFID system contains a reader and one or more tags
 - Each tag's unique serial number identifies a specific person or object



- Two major tag types:
 - Passive: No internal power source or transmitter, shorter range
 - Active: Power source (battery) and transmitter, longer range
- Four typical frequency ranges:
 - LF (Low Frequency), 125 to 134.2kHz
 - HF (High Frequency), 13.56MHz
 - UHF (Ultra-High Frequency), 868 to 928MHz
 - uW (Microwave), 2.45 and 5.8 GHz

- 1. Reader's antenna transmits RF energy
- Energy "harvested" by tag's antenna and used to power up internal circuitry
- 3. Tag will modulate electromagnetic waves generated by the reader to transmit data
- Receiver demodulates waves and converts to digital signal

- No security between most tag and reader transmissions
 - If you have a reader for the correct tag family and frequency, you can communicate with the tag
- Trivial to create system to read/write RFID tags
 - Parallax RFID Reader Module, www.parallax.com
 - Texas Instruments Web Page, www.tiris.com
 - MAKE Magazine, Issue 3 (coming soon...), www.makezine.com

- In January 2005, challenge/response scheme of Digital Signature Transponder (DST) tag was cracked
 - Used for Mobil SpeedPass, vehicle immobilizers, etc.
 - "Analysis of the Texas Instruments DST RFID,"
 http://rfidanalysis.org
- Proprietary cipher (based on 40-bit key) reverse engineered from a single PowerPoint slide
- Over 150 million deployed devices are now at risk and could be cloned or spoofed!

Intel NetStructure 7110: Administrator Access

- SSL cryptographic accelerator
 - Offloads crypto functions from primary Web server to increase performance
- Standard PC motherboard, Pentium II 333MHz, Rainbow (now SafeNet) CryptoSwift Accelerator card

Intel NetStructure 7110: Administrator Access 2

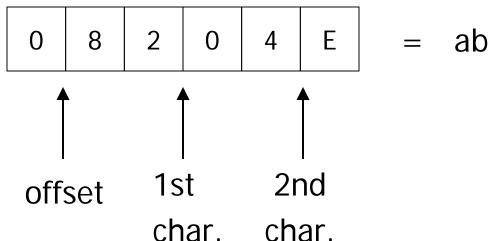
- Serial port-based management console on front of unit
- Can be compromised to allow supervisor access
 - "Intel NetStructure Backdoors," www.atstake.com/ research/advisories/2000/ipivot7110.html
 - "HPYN 2nd ed.: Hardware Hacking" chapter excerpt, www.grandideastudio.com/files/books/ hpyn2e_chapter14.pdf

Intel NetStructure 7110: Administrator Access 3

- 1. Opened the unit
- 2. Retrieved filesystem
 - Stored on 32MB CompactFlash card
- 3. Examined filesystem
 - Used strings to determine BSD-flavor of Unix
- 4. Mounted filesystem on extra machine
- Discovered password generator
 - Supervisor password based on MAC address of unit

Intel NetStructure 7110: Administrator Access 4

- Based on standard PC architecture
- Filesystem easily retrievable and mountable
- Executables compiled with debug symbols
- Homebrew crypto routines extremely weak


Cisco Router: Configuration Password

- User-selectable password types:
 - Type 0: Plaintext
 - Type 5: MD5 hash
 - Type 7: "Encrypted" (Encoded)
 - Others?
- "Encrypted" password stored on router
 - Stored in NVRAM and can be retrieved from configuration settings

Cisco Router: Configuration Password 2

- Passwords of type 7 encoded by XOR'ing plaintext against constant value
 - www.alcrypto.co.uk/cisco among others
- ASCII constant block
 - tfd;kfoA,.iyewrkldJKD
- Ex.:

IBM 4758 Secure Cryptographic Coprocessor

- Likely the most recognized, commercially available secure coprocessor system
 - A protected hardware subsystem designed to execute sensitive functions in a trusted manner
 - FIPS-140 Level 4 tamper responsive device with hardware cryptographic support and physical tamper protection
 - Also random number generation, authentication, general-purpose processor/coprocessor, etc.
- Commonly used in financial and banking transactions

IBM 4758 Secure Cryptographic Coprocessor 2

- In 2001, First known attack against IBM 4758 by taking advantage of a flaw in the Automated Teller Machine "Common Cryptographic Architecture" support software
 - "Extracting a 3DES key from an IBM 4758," www.cl.cam.ac.uk/~rnc1/descrack
- Can export all of the program's DES/3DES keys
 - Ex.: Communications Key, Pin Derivation Key, and Importer/Exporter Keys

IBM 4758 Secure Cryptographic Coprocessor 3

- Performed by an insider with physical access and a \$995 Altera FPGA Development Board
 - As of February 2002, new version (2.41) of CCA fixes problems
- Even though hardware was strong, software was able to be compromised, thus breaking the whole

system

Wireless Access Points: Dell TrueMobile 1184

- One of many broadband access point/routers
- Device based on vLinux distribution
 - www.onsoftwarei.com/product_vlinux.htm
 - "Hardware Hacking: Have Fun While Voiding Your Warranty" Wireless Hacks chapter
- Port scan reveals open ports 80, 333, 1863, 1864, 4443, 5190, 5566

Wireless Access Points 2: Dell TrueMobile 1184

- Can telnet into port 333 with default password to gain complete control of the device
 - username: root, password: admin
- No special hardware tools or reprogramming is necessary
- Many devices running Linux which can make hacking/experimentation easier
 - www.linuxdevices.com
 - www.ucdot.org

NIC MAC Address Cloning

- MAC (Media Access Control) Address often stored in easily reprogrammable Serial EEPROM
 - www.grandideastudio.com/files/security/general/
 mac_address_cloning.pdf
- Cloning could be used to bypass copy protection, gain access to MAC-filtered networks, etc.
- MAC = 6-byte value
 - First 3 bytes = Manufacturer
 - Second 3 bytes = "Unique" serial number
- Depending on the NIC, other configuration data also accessible
 - Ex.: I/O base address, interrupt type, checksum

NIC MAC Address Cloning 2

- Tools available to change or spoof in software
 - No hardware tampering needed!
 - SunOS: ifconfig
 - SPARC: set in NVRAM with prom-monitor

Manufacturer	Model	EEPROM	MAC Address	Data
National Semiconductor	NSC?	93LC06	08:00:17:03:C0:E5	0008 0317 E5C0 0000 0500 010D 01DA 5757
				4242 0000 0000 0000 0000 0000 0020 0020
Ansel Communications	N2000 Plus 3	93C46	00:40:90:80:07:7E	4000 8090 7E07 FFFF FFFF FFFF FFFF 5757
				4242 FFFF FFFF FFFF FFFF 0100 FF20
Microdyne	NE2000 Plus 3	93C06	00:80:29:E7:C2:9C	N/A
Linksys	Ether16	93C46	00:40:05:44:17:A7	4000 4405 A717 0108 020A 5464 00D8 0000
				0000 0000 0000 0000 0000 0000 0000 0000
Genius	GE2000 II	93C46	00:40:33:2A:82:82	4000 2A33 8283 5805 0000 0000 0000 5757
				4242 0000 0000 0000 0000 0000 2100 0020
Winbond	HT-2003CT	93C46	48:54:33:01:48:24	5448 0133 2448 0000 5448 0133 2448 5757
				4242 0000 0000 0000 0000 0000 4040 0020

Mobile Devices: Current Risks

- Business often mixed with personal
- Most devices have no security framework
 - No access control or data/memory protection
 - Existing security mechanisms are weak and/or flawed
- "Always on" technologies leave device open to the world...all the time
 - Ex.: WiFi, Bluetooth, IR, etc.
- External memory cards
 - Some devices load apps automatically upon insertion
 - Easy to steal

Mobile Devices: Palm OS < 4.0 Password Retrieval

- Max. 32 characters ASCII
- Reversible obfuscation method (XOR against constant)
 - "Palm OS Password Retrieval and Decoding," www.grandideastudio.com/files/security/mobile/ palm_password_decoding_advisory.txt
- Can retrieve password/hash:
 - During HotSync operation (IR, Serial, Network)
 - On Palm: "Unsaved Preferences" database
 - On host PC: \Palm\users.dat
 - On host Mac: Palm:Users:Palm Users

Mobile Devices: Palm OS >= 4.0 Password Retrieval

- Max. 32 characters ASCII
- Encoded block is 128-bit MD5 hash (not reversible)
- Dictionary attack still possible using common words
 - Take advantage of short passwords

Mobile Devices: Palm OS Backdoor Debug Mode

- Exists for debugging during app development
- Can install/delete/run apps, view raw memory, hard reset, export databases
- Can use to bypass "System Lockout" functionality (OS < 4.0)
 - www.grandideastudio.com/files/security/mobile/
 palm_backdoor_debug_advisory.txt
- No notification of activity is evident on device
- Can use pdd or PDA Seizure to create exact
 forensic image of data

Mobile Devices: Pocket PC Password Retrieval

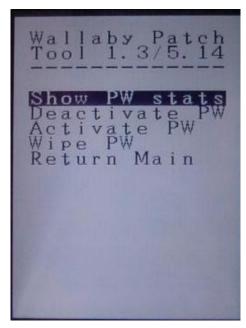
- ActiveSync used for all communication between PC and device
 - Available through serial, USB, IR, TCP/IP, Bluetooth
- Reversible obfuscation method (XOR against constant)
- Can retrieve password/hash:
 - In host PC registry: hkey_current_user\software\ Microsoft\Windows Ce Services\Partners

Mobile Devices: Pocket PC Password Retrieval 2

- On some devices, 4-digit PIN used for authentication can be manually brute-forced
- Pocket PC registry accessible by any user on the device
 - PHM Registry Editor, www.phm.lu/Products/PocketPC/RegEdit
 - Ex.: PPP network passwords stored in plaintext
- Can change Control Panel Applet (cpl) entry in registry to redirect password screen
 - Microsoft "Let Me In" example, Q314989

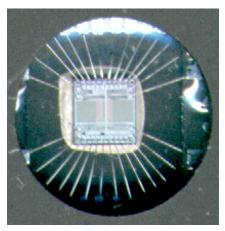
Mobile Devices: Visual Studio .Net Debugger

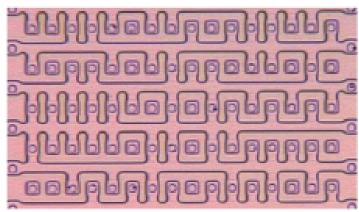
- Exists for debugging during app development
 - Provides remote debugging and device access to Windows CE / Pocket PC
 - Developer's documentation publicly available
 - Uses ActiveSync protocol
- Can access Pocket PC registry, install/delete/run apps, export databases

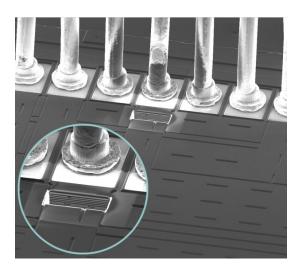

Mobile Devices: Pocket PC Phone Edition

- Allows access to a device without passing any access controls
 - http://forum.xda-developers.com
- Provides a detailed debugging and diagnostics interface through sync port
- Special mode to recognize diagnostic external memory cards and can execute code directly from them

Mobile Devices: Pocket PC/XDA Bootloader

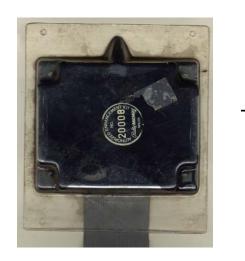


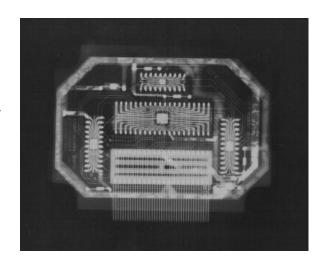



Source: "The Phone in the PDA," Job de Haas, Black Hat Amsterdam 2003

Advanced Attack Methods

- Chip Decapping and Die Analysis
 - Attacker can visually recreate contents or modify die
 (Ex.: to obtain crypto key or remove security bit)
 - Tools: Chip Decappers, Scanning Electron Microscope,
 Voltage Contrast Microscopy, Focused Ion Beam





Advanced Attack Methods 2

- X-Ray
 - Attacker can bypass any encapsulation methods to determine inner bus structures and circuit configurations
 - "How to Crack a Pac Man Plus!," www.multigame.com/pacplus.html

Common Hardware Design Problems

- Most/many engineers not familiar with security
 - Ex.: Using XORs for "encryption" is recommended in some Verilog/VHDL books!
- Components easy to identify
 - Circuitry can easily be reverse engineered
- Many products based on publicly-available reference designs
- No anti-tamper mechanisms used
 - Easy to open up product and probe circuitry

Common Hardware Design Problems 2

- Improper protection of external memory
 - Most memory is notoriously insecure
 - Serial EEPROMs can be read in-circuit
 - SRAM-based FPGA configuration can be sniffed
- "Security through obscurity" still practiced
 - Hiding something does not make the problem go away

Conclusions

- Even though technology has advanced, same classes of problems still plague hardware
- Most, if not all, hardware solutions are open to attack
- Hardware is usually inherently trusted
 - Black box != security
- Blindly trusting hardware leads to a false sense of security
 - Hardware is not voodoo

Thanks!

Joe Grand Grand Idea Studio, Inc.

www.grandideastudio.com

