

Session #R6 RFID Security for Retail Enterprises

RFID Security for Retail Enterprises

Session #R6
Joe Grand
Grand Idea Studio, Inc.
Tuesday, 1:45pm – 2:45pm

Agenda

- Overview of RFID Technologies
- RFID Use and Implementation
- Security Risks and Attacks
- Demonstration of Portable RFID Readers
- Resources

What is Radio Frequency Identification (RFID)?

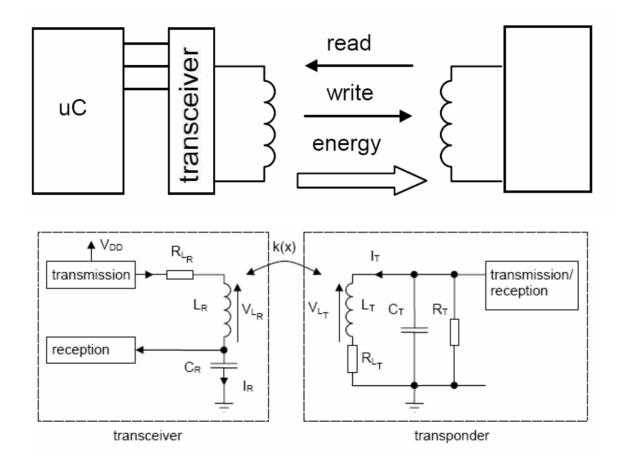
- Generic term for non-contacting technologies that use radio waves to automatically identify people or objects
- Has been available for decades, but just now becoming popular for mainstream
 - Access control, automatic identification (passports, driver license), payment systems, inventory (human?) tracking, car immobilization, casino chips

- Most common use is to store unique serial number or electronic product code (read-only) on a microchip that is attached to an antenna
 - Combined antenna and microchip called a "transponder" or "tag"
- Typical RFID system contains a reader (also called an "interrogator") and one or more tags
 - The reader is usually a combination of hardware and software
 - Each tag's unique serial number identifies a specific person or object

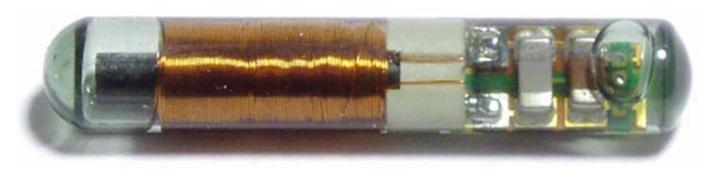
- Two major tag types:
 - Passive: No internal power source or transmitter, shorter range
 - Active: Power source (battery) and transmitter, longer range
- Four typical frequency ranges:
 - LF (Low Frequency), 125 to 134.2kHz
 - HF (High Frequency), 13.56MHz
 - UHF (Ultra-High Frequency), 868 to 928MHz
 - uW (Microwave), 2.45 and 5.8 GHz

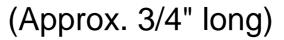
- Three tag flavors:
 - Read-Only
 - Read/Write
 - Cryptographic
- No security between most tag and reader transmissions
 - If you have a reader for the correct tag family and frequency, you can communicate with the tag
 - Can easily create an RFID "scanner" to snoop around for RFID tags and retrieve their data

- The effective range of a tag depends on many factors:
 - RFID system frequency
 - Transmit power of the reader
 - Quality of the reader's antenna
 - Tag type
 - Interference from other RF devices
- Some systems governed by public standards to make them more "universal"
 - Ex.: ISO 18000, ISO 15693, ISO 14443

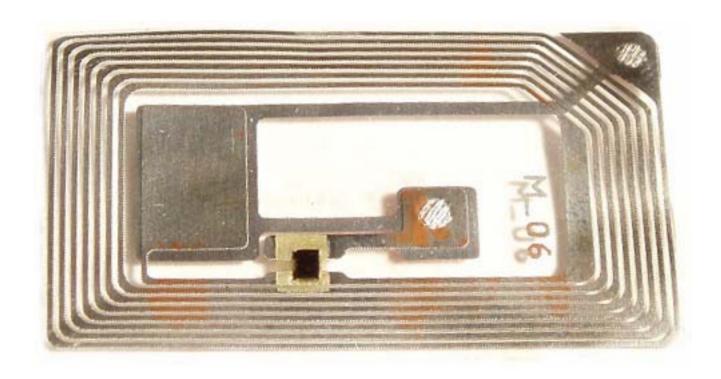


- 1. Reader's antenna transmits electric field or magnetic field (called a "carrier")
- Energy "harvested" by tag's antenna and used to power up internal circuitry
- Tag will modulate electromagnetic waves generated by the reader to transmit data
- 4. Receiver demodulates waves and converts to digital signal





Tag Example: TI 125kHz



Tag Example: 13.56MHz Label

(Approx. 3" long)

Tag Example: Smart Labels

- ISO standard designed to replace UPC (Universal Product Code) barcodes on products
- Each label stores a unique EPC (Electronic Product Code)
- Typically uses 13.56MHz range
- Ex.: Inventory tracking, Customer auto-checkout,
 Track behavior of customer in the shop, etc.

EPC Type 1			
01	0000A66	00016F	000169DCD
Header	EPC Manager	Object Class	Serial Number
8 Bit	24 Bit	24 Bit	36 Bit

Retail/Inventory Tracking

- All assets labeled with RFID tags to track item from manufacture to sale (Ex.: Smart Labels)
- Benefits:
 - Easy integration at the production plant
 - Easy sorting and tracking of stock

Retail/Inventory Tracking 2

- Ex.: The Gillette Company
 - Up to 35% loss of their product from plant to retail
 - Shoplifting a major problem for razor blades
 - Most products contain RFID tag on/inside product
 - Major privacy concerns: www.boycottgillette.com

Retail/Inventory Tracking 3

- Ex.: Vienna, Austria Main Library
 - RFID tags placed on over 240,000 books and 60,000 CDs/DVDs
 - Label contains: ISBN (International Standard Book Number), Author, Title, Location in the library, Last individual who checked out the book, Status
 - Self-service terminals ("EasyChecks") available for easy media check-out and return

Passports

- Mandate for US and 27 other countries to transition to electronic passports in 2005/2006
 - Ex.: Malaysia's national ID card, "MyCard," already has RFID
- Electronic passports will contain ISO 14443-compliant RFID tag
- Passport to be readable from 4 inches away

User must open passport before communications

can begin

Passports 2

- Tag stores personal information and biometric data
 - Ex.: EU to store fingerprints, US to store digital representation of ID photo
 - To be encrypted?
- Baseline implementation has no access control
 - Anyone with the proper equipment can uniquely identify individual passports
 - Even if data is encrypted, could still identify who has a passport and possibly from what country

Casino Chips

- Casinos are starting to embed RFID tags into chips to:
 - Monitor gambling activity (for "comps")
 - Detect counterfeit chips
 - Catch cheaters who try to surreptitiously add or remove chips from a wager
 - Track movements of the chips/player within the casino?
 - Ex.: Wynn Casino the first to announce and use?

Other Applications

- Credit Cards
 - September 19, 2005: MasterCard to distribute 4 million "PayPass" cards, www.paypass.com
- Transportation Systems
 - London Underground, www.oystercard.com
 - Washington, DC Metro, "SmarTrip" card launched May 1999, 360,000 users
 - EZ Pass (New York, Massachusetts, many other places), FasTrak (SF/Bay Area) for toll roads, active tag

Other Applications 2

Cheese

- "Who Made My Cheese? Tags Track
 Parmesan's Age, Origin," The Wall Street
 Journal, July 7, 2005, pg. B1
- 94-member co-op of Parmesan cheese makers in Northern Italy
- Branding 30kg (66lb) tire-sized cheese wheels to uniquely track & update the status of each wheel and assure buyers of its authenticity

RFID Security Concerns

- Confidentiality
 - Prevent reading/copying of data from RFID tag
- Integrity
 - Prevent modification, spoofing or replay attacks of RFID system or tag data
- Availability
 - Prevent denial-of-service of RFID system or deletion of RFID tag data
- Liability
 - Prevent abuse or misuse of RFID tag data

- Tag Placement
 - Switch label between assets
 - Apply label to incorrect assets
 - Cover label with blocking material
 - Destroy label
- Physical
 - Modify the reader or back-end server/database
 - Advanced techniques to modify/alter the IC within the tag
 - Data is typically stored in cleartext on the microchip

- Passive
 - Simply retrieve information from tag using offthe-shelf/custom reader system (also known as "skimming")
 - Sniff tag-to-reader or reader-to-tag communication
 - Capacitively-coupled RFID tags (UHF/uW) more vulnerable than inductively-coupled (LF/HF) due to signal propagation range
 - Side-channel attacks (e.g., differential power analysis)

EX.: www.cryptography.com/resources/whitepapers/DPA-technical.html

- Active (also known as "Air Interface Attacks")
 - Reprogram tags (many tags are not writeprotected)
 - Spoof tag/reader communication
 - Clone tag (label impersonation)
 - Denial-of-Service with noisy/overpowering RF signal
 - Enable tag-specific "Kill" command
 - Tag cannot be restored once killed
 - Created due to privacy concerns of tag remaining active after its not needed anymore
 - EPC G2 uses password protection to enable

- RFID Virus/Malware
 - Rogue tag sends malware to system via reader interface
 - Ex.: Melanie Rieback, RFID Viruses and Worms, www.rfidvirus.org

RFID Attack Example: Data Modification

- Modifying data stored on an RFID tag
- Popular with EPC-based Smart Labels (13.56MHz) used in retail environments
 - Ex.: The Metro Future-Store, www.future-store.

RFID Attack Example: Data Modification 2

- Attack becomes a new class of shoplifting
 - Ex.: Change EPC codes from one product to another
 - Ex.: Change the age-restriction on adult materials
 - Ex.: Deactivate the tag (if supported) so it is not readable
- Attack can be succeeded with publicly-available RFID reader/writer hardware

RFID Attack Example: Card Simulation

- RFID/Proximity Card Simulation by Jonathan Westhues, http://cq.cx/prox.pl
- Designed for HID-style cards
- Attack process:
 - 1. Read a legitimate card to get its ID code
 - 2. Store the ID in memory
 - 3. Replay the ID to a legitimate reader

RFID Attack Example: TI DST

- In January 2005, challenge/response scheme of Texas Instruments Digital Signature Transponder (DST, www.ti.com/rfid) tag was cracked
 - Ex.: Mobil SpeedPass, vehicle immobilizers, etc.
 - "Analysis of the Texas Instruments DST RFID," www.rfidanalysis.org

RFID Attack Example: TI DST 2

- Weak, proprietary cipher (based on 40-bit key) reverse engineered from a single PowerPoint slide
 - Properly designed crypto systems should depend solely on the secrecy of the key
 - Discovery of TI's proprietary algorithm was the Achilles' heel of the DST
- Over 150 million deployed devices are now at risk and could be cloned or spoofed!
- TI acknowledged the discovery, but still nothing has changed (they do not find the threat something that is likely to occur in the mainstream)

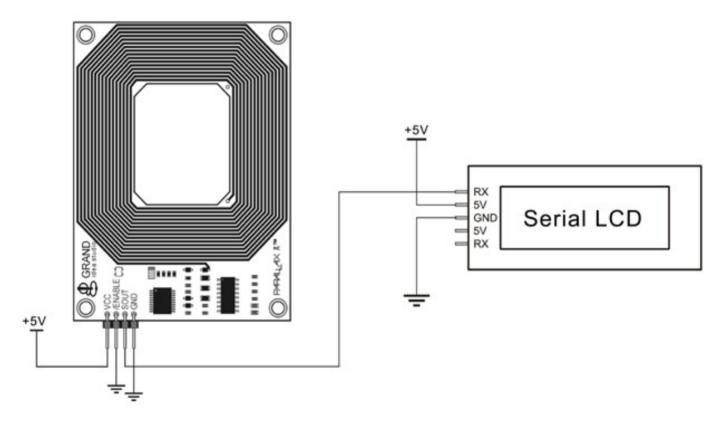
Joe says... "It's only a matter of time!"

RFID Attack Example: TI DST 3

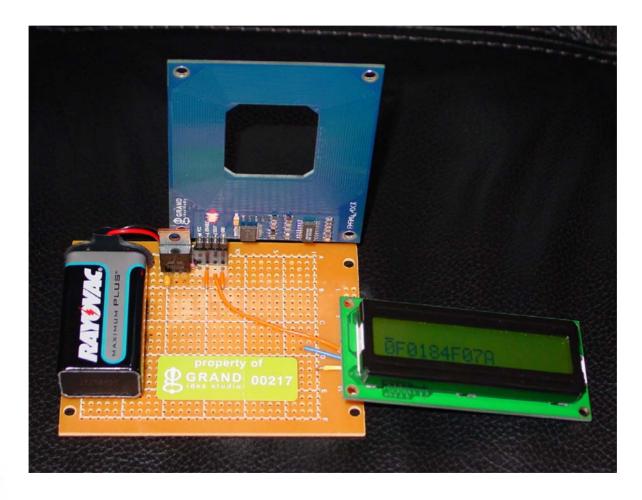
- Attack process:
 - "Skimming": Retrieve DST reader challenge and subsequent tag response
 - 2. Key cracking: Used custom hardware to recover the unique cryptographic key of the DST
 - Simulation: Used custom hardware and software routines to impersonate the original DST tag

- Trivial to create system to read/write RFID tags
 - If you have a reader for the correct tag family and frequency, you can communicate with the tag
 - Can easily create an RFID "scanner" to snoop around for RFID tags and retrieve their data
- We demonstrate two systems:
 - Parallax RFID Reader Module (125kHz)
 - ACG H102022 PC Handheld Reader Module (13.56MHz)

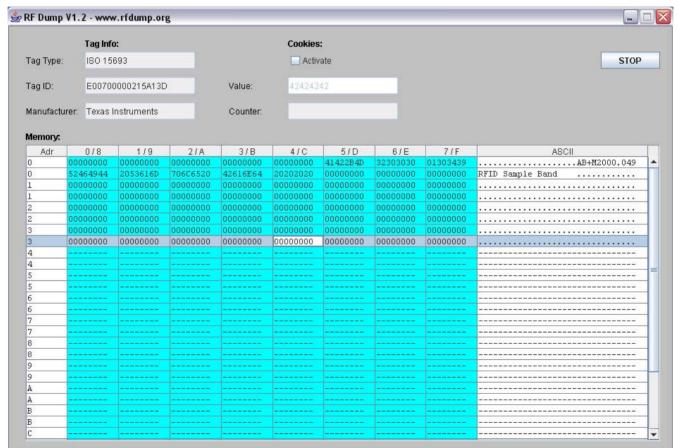
- We used the Parallax RFID Reader Module (designed by yours truly), www.parallax.com/detail.asp? product_id=28140
 - Reads passive, low-frequency (125kHz) RFID tags from up to ~4" away
 - Works specifically with the EM Microelectronic EM4100-family read-only tags
 - Some of the most widely used throughout the world
 - Each tag contains a unique identifier (one of 2⁴⁰, or 1,099,511,627,776, possible combinations)



- If a valid tag is read, the RFID Reader Module sends a 12-byte ASCII string containing the tag's unique ID via simple serial interface
- By connecting the output to an off-the-shelf Serial LCD Module, we can see any RFID tag IDs that are in the vicinity
 - Ex.: Parallax 2x16 Serial LCD Backlit, www.parallax.com/detail.asp?product_id=27977



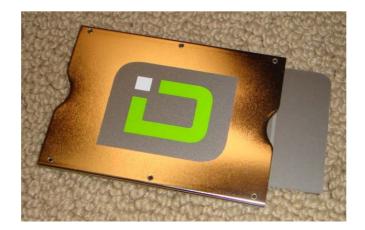
Making a Portable RFID Reader 5



Making a Portable RFID Reader 6

- ACG Identification Technologies' H102022 13.56MHz
 RF PC Handheld Reader Module (www.acg.de)
 - Uses CompactFlash (CF)/PCMCIA interface to connect to PC or PDA
 - Supports ISO 15693 (Tag-it ISO, My-d, I-Code SLI, LRI512, TempSense), ISO 14443 A (Mifare Standard, Mifare UltraLight), ISO 14443 B (SR176)
- RFDUMP (www.rf-dump.org), by Lukas Grunwald and Boris Wolf, allows complete reading/writing support of the above tags using the ACG reader
- RFIDIOt (www.rfidiot.org) by Adam Laurie, an opensource python library for exploring RFID devices

Making a Portable RFID Reader 7



Protection Methods?

- Secure Sleeve (formerly SMARTSHIELD), www.idstronghold.com
 - Blocks the magnetic field emitted by LF/HF tags
 - Prevents tag from receiving power it needs to operate
 - Approximates a Faraday Cage to block any electric field from entering or exiting the shield
 - Works great with the tags I've tested!

Protection Methods? 2

- Low-Tech: Tinfoil to create Faraday Cage
 - Intended for capacitively-powered (UHF) tags
 - Will not stop inductively-powered (LF/HF) tags

Conclusions

- Current RFID technologies are open to attack
 - Can lead to identify theft, privacy breaches, and theft-of-service
 - RFID tags can easily be read through clothing, from large distances (up to ~50 ft.), and without detection
- Most RFID systems/software are not designed with security in mind
 - Challenge/response and rolling code tags >
 ID/stored value, but still not unbreakable

Conclusions 2

- Overall privacy/security issues should be seriously considered before making a switch to RFID
 - Understand what data is being stored on the tags
 - Evaluate all technologies before deployment
- Protect access to RFID tags and data whenever possible

Resources: Magazines

- RFID Journal, www.rfidjournal.com
- RFID Gazette, www.rfidgazette.org
- RFID News, www.rfidnews.org

Resources: Vendors

- IDmicro, www.idmicro.com
- ActiveWave, www.activewaveinc.com
- On Track Innovations, www.oti.co.il
- Sokymat, www.sokymat.com
- ACG Identification Technologies, www.acg.de
- Texas Instruments, www.ti-rfid.com
- RSI ID Technologies, www.rsiidtech.com
- EM Microelectronic, www.emmicroelectronic.com

Resources: Web Sites/Articles

- RSA Laboratories: RFID Privacy and Security,
 www.rsasecurity.com/rsalabs/node.asp?id=2115
- Spychips: RFID Privacy Website, www.spychips.com
- MAKE: Blog: Interview with RFID implanter, www.makezine.com/ blog/archive/2005/04/interview with 1.html
- Proposal to Implant Tracking Chips in Immigrants,
 www.livescience.com/scienceoffiction/060531_rfid_chips.
 html

Resources: Presentations

- Lukas Grunwald, RF-ID and Smart-Labels: Myth, Technology and Attacks, Black Hat Briefings USA 2004, www.blackhat.com/ presentations/bh-usa-04/bh-us-04-grunwald/bh-us-04grunwald.pdf
- Kevin Mahaffey, Passive RFID Security, www.blackhat.com/ presentations/bh-usa-05/bh-us-05-mahaffey.pdf
- Melanie Rieback, A Hacker's Guide to RFID Spoofing and Jamming, DEFCON 14
- Lukas Grunwald, First We Break Your Tag, Then We Break Your Systems: Attacks to RFID Systems, DEFCON 14

Resources: Books

- RFID Security, Frank Thornton, et al., ISBN 1597490474
- RFID Toys, Amal Graafstra, ISBN 0471771961, www.rfidtoys.net

Thanks!

Joe Grand Grand Idea Studio, Inc.

joe@grandideastudio.com

