
pdd: Memory Imaging and Forensic Analysis
of Palm OS Devices

Joe Grand
jgrand@mindspring.com

Abstract

One goal of incident response is to preserve the entire digital crime scene with minimal or no
modification of data. This paper introduces pdd or “Palm dd”, a Windows-based tool for memory
imaging and forensic acquisition of data from the Palm operating system (OS) family of Personal
Digital Assistants (PDAs). pdd will preserve the crime scene by obtaining a bit-for-bit image or
“snapshot” of the Palm device’s memory contents. Such data can be used by forensic investigators,
incident response teams, and criminal and civil prosecutors.

This paper also presents the Palm OS internals (hardware, file system, and debugger func-
tionality), pdd details1 (usage, process, flowchart, and timing), and forensic analysis results (flash
memory, record removal and deletion, retrieval of system passwords, and telephony applications).

1 Introduction

PDAs are ubiquitous in the consumer marketplace and it is only natural that they will, as desktop
and laptop computers have, become a target for criminal investigations and forensic analysis. pdd or
other tools that aid in data acquisition and analysis of portable devices should be readily available
in any incident response toolkit, as should any tool that maximizes an investigator’s ability to
collect credible digital evidence.

The Palm OS has been licensed to a number of vendors including Handspring, Sony, IBM, Ky-
ocera, Samsung, QUALCOMM, Franklin Covey, TRG, and Symbol Technologies. Devices running
Palm OS own nearly 80 percent of the global handheld computing market2, equal to approximately
20 million devices, and consist of consumer-based PDAs, telephones integrated with PDA function-
ality, and barcode and wireless integration for industrial applications. pdd has been designed to
work with all devices running Palm OS.

∗Published by the Forum of Incident Response and Security Teams in the Proceedings of the 14th Annual Computer
Security Incident Handling Conference, Waikoloa, Hawaii, June 24-28, 2002.

1The examples and descriptions of pdd are for release version 1.1 and may change as the tool is updated.
2IDC, December 2000.

In addition to providing a complete, unmodified memory image of the specified memory card,
pdd retrieves and displays the following device information:

• Card Number • Card Name
• Manufacturer Name • Card Version
• Creation Date • Palm OS Version
• Processor Type • RAM Size
• Free RAM • ROM Size
• ROM Used By OS • Flash ID (if available)

The memory image of the device includes all user applications and databases, which can contain
log data, completed ‘To Do’ items, ‘Private’ records, passwords, cryptographic components, and
other potentially useful information for incident response or forensic analysis purposes. Stray
databases that old applications left behind are also retrieved, as are records that have been marked
for deletion (which are not removed from the device until the next HotSync operation).

The Palm OS Console Mode Debugger is used to acquire memory card information and to create
the image of the selected memory region. Because the operation of pdd relies solely on the built-in
Palm OS Debugger functionality and does not require any additional software components loaded
on the device, the data retrieved is likely to be correct and not tampered with. No third-party
applications need to be running on the target system in order for the pdd process to work.3 In
some cases, the Palm OS Debugger can be invoked even if the system is password-protected. Other
existing Palm acquisition tools make use of the Palm HotSync functionality, which is disabled when
the Palm system lock-out is active.

2 Palm OS Details

2.1 Hardware

At the time of this writing, all hardware devices that run the Palm operating system use the
Motorola DragonBall MC68328-family of microprocessors which are based on the Motorola 68K
core.4 The original DragonBall processor, released in 1995, has been joined by two subsequent
updates, the DragonBall EZ and the DragonBall VZ. Each release has become more streamlined
for use in PDAs and other portable devices. Two next-generation processors, the DragonBall Super
VZ and the DragonBall MX1, are due for sampling in 2002. The DragonBall MX1 is based on the
ARM core architecture. Table 1 shows a selection of Palm OS devices and their core processors.

Palm devices consume battery power even when they are “turned off”. If left unattended for an
extended period of time, the batteries will deplete and all data stored in RAM will be destroyed.5

Recharging or replacing the batteries of the device and monitoring the battery levels should be
done diligently. For long-term storage of Palm devices containing internal rechargable batteries,
it is suggested that each device is constantly connected to a recharging cradle or travel cable to
ensure that battery levels are at their maximum.

3Since the Palm Debugger uses Remote Procedure Calls (RPCs) to call functions within the Palm OS Applica-
tion Programming Interface (API), it may be possible for malicious code to trap those API calls to perform other
functionality (such as transmitting incorrect data back to pdd). [2]

4http://e-www.motorola.com
5The contents of ROM and Flash will not be affected by loss of battery power, as these memory devices are

non-volatile and do not require power to retain data.

2

Device Processor Type
USRobotics Pilot 1000/5000 DragonBall
USRobotics PalmPilot Personal/Professional DragonBall
3Com Palm III DragonBall EZ
3Com Palm Vx DragonBall EZ
IBM WorkPad c3 (Palm V) DragonBall EZ
Kyocera QCP 6035 smartphone DragonBall EZ
Palm Computing m105 DragonBall EZ
Palm Computing m500/m505 DragonBall VZ
Handspring Visor Prism DragonBall VZ
Handspring Treo 180 DragonBall VZ

Table 1: A sampling of Palm OS devices and their core processors.

2.2 File System

Palm OS does not use a flat file system as do many traditional operating systems. Battery-
backed Random Access Memory (RAM) is used for non-volatile storage and is logically divided into
dynamic and storage memory (Figure 1). The Palm OS Memory Architecture documentation [4]
provides detail of the Palm OS memory structures and examines the basic building blocks of Palm
OS memory: heaps, chunks, and records.

Interrupt Vectors

System Globals

System Dynamic Allocation

Application Stack

Application Dynamic
Allocation & Globals

Remaining Memory

Dynamic Area

Storage Area

0000 0000h

0000 03FFh

Figure 1: Conceptual view of RAM showing interrupt vector locations and dynamic and storage
usage.

Dynamic memory, analogous to RAM installed in a typical desktop system, is used as working
space for the program stack and short-term data (e.g., pen strokes, key presses, system events, video
memory, global variables, and user interface structures). The size of the dynamic memory region
depends on the OS version and on the total memory on the Palm device and changes constantly
during device use. The remainder of RAM is used as storage memory, analogous to a disk drive.
Regardless of the logical division of RAM, pdd images the entire RAM region which contains both
dynamic and storage memory areas.

3

The operating system and other non-transient components are often stored in Read-Only Mem-
ory (ROM). Newer devices are moving towards Flash memory as a replacement. This allows the
contents of memory to be rewritten which is useful for operating system upgrades.

The memory for each Palm OS device resides on a module known as a card. Each card is a
logical definition and does not necessarily correspond to a physical card. Palm OS is designed
to be modular in that multiple cards (each containing RAM, ROM, or both), can be functional
in a given device. This allows for future expansion in which a Palm device might contain an
internal card (e.g., RAM and ROM for the operating system) and an external card (e.g., user
application and data storage). For example, Palm devices such as the m125, m500, m505, and
i705 contain an external expansion slot for SecureDigital/MultiMediaCard (SD/MMC) memory
cards. The Sony Clié family of Palm devices supports the Sony Memory Stick. Handspring devices
support SpringBoard Modules. The MemPlug series of SpringBoard Modules can read and write
to CompactFlash, SmartMedia, SD/MMC, or Sony Memory Stick. Card number ‘0’ is defined by
Palm, Inc. as the single internal RAM and ROM module. External memory modules will have a
non-‘0’ card number.

The DragonBall Super VZ and MX1 processors contain embedded support for SD/MMC and
Sony MemoryStick, which may lead to more portable devices accepting external memory cards.

2.2.1 Memory Map

The base starting addresses for the RAM and ROM areas of Palm devices vary depending on the
processor type, as does the memory range allocated to each memory card. pdd will determine the
processor type employed in the target device using the pdd FtrGet function and will configure the
base addresses (within the DragonBall’s possible 4GB of address space) as necessary. Figure 2 shows
the memory maps and relevant regions for typical Palm OS devices using DragonBall, DragonBall
EZ, or DragonBall VZ processors.6

0000 0000h

1000 0000h

10C0 0000h

2000 0000h

FFFF F000h

RAM

ROM

Processor
Registers

Card 0 Base

Card 1 Base

3000 0000h Card 2 Base

10C0 0000h

2000 0000h

FFFF F000h

ROM

Processor
Registers

Card 0 Base

Card 1 Base

4000 0000h Card 2 Base

DragonBall DragonBall EZ

0000 0000h

RAM

1000 0000h

2000 0000h

FFFF F000h

ROM

Processor
Registers

Card 0 Base

Card 1 Base

4000 0000h Card 2 Base

DragonBall VZ

0000 0000h

RAM

Figure 2: Base addresses of relevant regions depending on processor type.

6Independently created, detailed memory maps are available from http://www.massena.com/darrin/pilot/

PilotHackTutorial.htm (DragonBall) and http://www.angelfire.com/al/freemb/memmap.html (DragonBall EZ).

4

2.2.2 Database Structure

The Palm File Format Specification [3] provides a detailed view into the file formats supported by
Palm OS. In general, all data conforms to one of the three defined file types:

• Palm Database (PDB). Record database used to store application or user data.

• Palm Resource (PRC). Resource database (similar structure to a Palm database). Applica-
tions running on Palm OS (also referred to as “programs”, “executables”, or “binaries”) are simply
resource databases containing code and user interface resource elements.

• Palm Query Application (PQA). Palm database containing world-wide-web content for use
with Palm OS wireless devices.

Databases are similar to files on a disk drive; the difference being that they are stored in a
sequence of memory chunks called records or resources instead of in one contiguous area. The
database file in device memory contains header information and a sequential list of pointers to
records or resources. The records within a database are similarly structured with record header
information and record data.

In each database header, there are three timestamps that are helpful in a forensic investigation.
Each timestamp is a 4-byte value stored in seconds since 1/1/1904: creationDate, the creation
date of the database, modificationDate, the time of the last modification of the database, and
lastBackupDate, the time the database was last backed up (if ever). Due to the current lack of
memory protection on Palm devices, these timestamps (as with any other data) can be fabricated
or modified.

Knowing the structure of the Palm file formats is important if the forensic investigation requires
parsing of the raw memory image provided by pdd into the individual PDB, PQA, and PRC files
that were stored on the handheld device. However, Palm reserves the right to store data in memory
using a different format than that used for files stored on a PC: “Currently, the ‘on-disk’ format,
which is the Desktop format, is similar, but not identical, to the handheld format, which is ‘in-
memory’.” [3]

This may pose a problem in the future if Palm OS is licensed to vendors who choose to change
the memory structures to fit their particular application. For Palm devices running OS 4.0 or
earlier, the in-memory and on-disk formats appear to be similar enough to rely on the Palm OS
developer’s documentation for parsing and analysis.

PDB Reader7 is a Windows-based application to view PDB files. Source code is available which
could be modified to parse raw memory images, such as provided by pdd.

With the announcement and subsequent arrival of Palm OS 5.08, which has major changes to
the underlying software architecture, care must be taken to ensure that all forensic tools support
proper memory acquisition techniques and that the parsing and analysis process conforms to the
OS 5.0 data structures.

7http://pws.chartermi.net/~sckienle/palm/pdbreader.zip
8http://www.palmsource.com/palmos/intro os5.html

5

2.3 Console Mode Debugger

Designed into Palm OS is a serial-based “Palm Debugger,” which provides source- and assembly-
level debugging of Palm OS executables on the physical device [5]. Entering a short keystroke
combination (Figure 3), the Palm device enters “Console Mode,” one of the two interfaces provided
by the Palm Debugger. First, draw the Shortcut symbol (a cursive ‘L’ character). Next, tap the
stylus twice to generate a dot (a period). Finally, write the number “2”. The Palm Debugger, once
enabled, listens on the RS232 serial port and Universal Serial Bus (USB) port (if it exists on the
device) for communications from the host. A “soft reset” of the Palm device will exit the Palm
Debugger. Power consumption is significantly increased when the Palm Console Mode is enabled,
so ensure that the Palm device has full battery capacity before beginning the acquisition process.

Figure 3: Graffiti stroke required to enable the Palm Console Mode. [5]

The Palm Debugger can be activated even if the Palm OS lockout functionality (using the Palm
OS built-in “Security” application) is enabled [2]. This problem is verified to concern Palm OS
versions 3.5.2 and earlier. The lockout functionality is assumed by most users to be a sufficient
protection feature because a password is required before the device becomes operational. This
potential security hole becomes a benefit when performing a forensic analysis. Even if the target
device has been locked, a complete memory image of the device can still be obtained (e.g., using
the pdd tool or by specific commands directly using the Palm Debugger). On devices running
Palm OS 4.0 or greater that are placed in the “Turned Off & Locked” state, it appears that the
Palm Debugger will not be activated. In this case, the device must be unlocked by entering the
user-defined system password before the Palm Debugger can be enabled.

3 pdd Details

3.1 Usage

pdd is a Windows-based command line tool that takes the following operands as arguments:

Operand Description Default Setting
if=value Name of serial communications port COM1
of=value Name of output file Standard output
card=n Palm card number 0 for built-in card
type=value Palm card memory type; RAM or ROM RAM
-? or -h Help

The pdd syntax is similar to that of the Unix-based ‘dd’ command, in which an input and
output are specified along with optional operands (e.g., card number and memory type instead of
the block size, data type, and other variables of ‘dd’).

Since pdd does not currently have USB support, the Palm device must be placed in the cradle
or attached to a HotSync cable connected to a serial port on the desktop PC. If the arguments

6

were properly specified on the command line, pdd will begin execution and display the following to
standard error:

Enter console debug mode [<shortcut> .. 2]

At this point, pdd is waiting for the Palm Console Mode to be enabled on the target device
which is done by entering the Graffiti keystroke combination shown in Figure 3. The Palm OS
device will enter the Console Mode of the Palm Debugger and will monitor the serial port for
communication. No notification of Console Mode activity will be present on the Palm device.

Care should be taken to ensure that the “Auto Off” functionality of the Palm device is disabled
during imaging. This can be done through the built-in “Preferences” application or with the Graffiti
stroke shown in Figure 3, replacing the ‘2’ with a ‘3’. If the device powers off during the imaging
process, pdd may need to be re-started.

If pdd can properly communicate with the target Palm device, the imaging process will com-
mence and display the following to standard error:

pdd process beginning.

3.2 Process

Initially, pdd will retrieve and write the following device information to a file named pdd.txt,
appending to the file if it already exists:

Current Time: Tue Mar 05 16:34:39 2002 UCT
Card Number: 0
Card Name: PalmCard
Manufacturer: Palm Computing
Card Version: 0001
Creation Date: Thu Dec 10 16:10:14 1998 UCT
Palm OS Version: 3.1.0
Processor Type: Motorola DragonBall 68EZ328
RAM Size: 2097152 bytes
Free RAM: 2042784 bytes
ROM Size: 2097152 bytes
ROM Used By OS: 1212412 bytes
Flash ID: 10FF1C795R3G-D
Image Output File: Standard output
Image Memory Type: RAM
Starting Address: $00000000

During the entire pdd process, critical error information is sent to standard error. After the
initial device information has been saved, pdd will begin to retrieve the desired memory region
from the Palm device, specified on the command line with the card= and type= operands. The raw
memory image is written to standard output unless a filename is specified using the of= operand on
the command line. pdd will continue to retrieve the Palm device memory until the entire region has
been completed. Only when the imaging operation is done and successful, pdd will automatically
soft reset the device in order to exit the debug mode. <Ctrl>-C can be used to abort the operation
at any time. The device will not be soft reset and the Palm Console Mode will remain enabled.

A soft reset is currently the only method to disable the Palm Console Mode once it has been
enabled. This may be a problem in some instances, as a soft reset will re-initialize the dynamic
heap and low-memory globals, and clean and compact the storage heap [4]. Potentially, deleted

7

database records (e.g., forensic evidence) could be destroyed (more details in §4.2). Because of
this, there may only be one chance to obtain a clean capture, so caution should be taken when
performing the initial memory dump as future captures and analysis results may be skewed.

If a cryptographic hash function, such as the MD5 Message-Digest Algorithm (defined in RFC
1321) or SHA-1 (defined in FIPS-180-1), is used on the pdd memory images for fingerprinting and
integrity checking, the RAM images of subsequent acquisitions of the same device will not match
due to the re-initialization of heaps as described above. Additionally, even if the device is not soft
reset in between acquisitions, the dynamic heap (which is captured by pdd) changes constantly.
For a ROM image, the hash will be identical for all subsequent acquisitions (unless data has been
modified by the user).

3.3 Flowchart

Figure 4 shows the core operation of pdd which occurs in the pdd() function. Each routine beginning
with ‘pdd ’ prepares a Palm Debugger Protocol packet [5] for the desired Palm OS API call or
debugger command. Internal details of these routines can be obtained directly from the pdd source
code.

pdd ()

pdd_MemCardInfo

pdd_HwrGetROMToken

pdd_ReadMemory

pdd_SysReset

Configure
memory base
location and

size

pdd_FtrGetGet OS Version

Get Processor Type pdd_FtrGet

Get Flash ROM ID
(if it exists)

Get Card/Manufacturer Name,
Card Version, Creation Date,

RAM Size, and Free RAM

All data read?
No

Yes

Loop to read specified
memory area

Device soft-reset

Done

pdd_ReadMemoryCalculate ROM Size

Figure 4: Flowchart of the core pdd() functionality.

Each Palm Debugger Protocol packet received from the Palm device contains a cyclic redun-
dancy check (CRC-16) checksum (defined in ISO 3309 and ITU-T V.42) which is checked by pdd’s
verify checksum function to ensure packet integrity during the data transfer. If the CRC-16
checksum fails at any time during the imaging, pdd will exit. The device will not be soft reset and
the Palm Console Mode will remain enabled.

pdd calculates the actual size of the ROM or Flash device by reading the chip-select registers of
the DragonBall processor. This needs to be done because the Palm OS API MemCardInfo function

8

used to obtain other card information returns only the size of ROM actually used by Palm OS, not
the physical ROM size. It is critical to obtain the entire ROM space for forensic analysis purposes
(as discussed in §4.1). It is believed that no other acquisition tool currently exists that retrieves
the entire ROM space. The ROM image acquired by pdd can be loaded directly into the Palm OS
Emulator (detailed in §4.5).

3.4 Timing

The Palm Console Mode defaults to a serial data transfer rate of 57.6kbps. Actual measured data
transfer is closer to 29.1kbps. This reduced rate (≈50%) is attributed to the overhead involved
in the Palm Debugger Protocol packet generation and parsing and the 256-byte maximum data
chunk size per packet. Although the Palm supports serial port rates of up to 230.4kbps, it was
determined that the times required to image memory were not greatly reduced at higher data rates
and we felt it safer to leave the Palm Console Mode in its default configuration. Table 2 shows the
approximate time required to image various memory sizes. These times are within reason if the
Palm device is legitimately in possession and does not need to be quickly returned.

Memory Size (kB) Time Required (≈mm:ss)
128 0:36
256 1:12
512 2:24
1024 4:48
2048 9:36
4096 19:09
8192 38:18
16384 76:36

Table 2: Time required for the transfer of various memory sizes using serial port @ 57.6kbps.

4 Forensic Analysis

The data retrieved by pdd includes all user applications and databases (along with stray databases
that old applications left behind). This provides a significant amount of information, much of which
can be extracted and analyzed using strings9 to find printable strings in an object or binary file.

For example, ‘To Do’ items are often checked as ‘completed’ and then forgotten about by
the user. However, the data still remains on the PDA. Applications that contain cryptographic
functionality are also of interest. When encrypted data (e.g., a record or database) is selected to be
used or viewed, it is decrypted and the cleartext component is stored in memory for a short length
of time10. Many times, the data is not re-encrypted until the device is powered off. If pdd is run
during this time, the cleartext data is still in memory and can be retrieved.

4.1 Flash ROM

Palm OS devices incorporating Flash memory currently use it solely for the storage of the operating
system code. Depending on the family of Palm OS device, there remains between 440kB and 1656kB

9http://www.simtel.net/pub/dl/gnuish/strings.zip
10This time period is dependent on how the application implements cryptographic functions.

9

of unused memory space. Utilities exist, such as Handera’s FlashPro11 or Brayder’s JackFlash12,
which take advantage of the unused memory areas of Flash ROM to backup applications and
databases. Because of this, it is essential that the ROM of the device be imaged and analyzed
during forensic acquisition.

The Flash ID, also known as the ROM Serial Number, is a 12-digit serial number intended to
be a unique identifier of the Palm device. This identifier only exists on devices that contain Flash
ROM. It is useful to use this number for tracking or documentation purposes, but since no memory
protection mechanisms currently exist on Palm OS devices, it is possible to modify the contents of
ROM including the area where the Flash ID resides [2]. It is not recommended that this identifier
alone be relied upon for device tracking. The serial number can be also be viewed using the built-in
Application Launcher application on the Palm device. A checksum digit is calculated during the
pdd HwrGetROMToken function to ensure proper transmission from the Palm device.

It should be noted that after a “hard reset” of the Palm device, all data stored in RAM is erased
and no evidence of prior data exists. The contents of ROM and Flash are retained.

4.2 Record Removal and Deletion

Records that have been marked for deletion by applications using the Palm API DmDeleteRecord
function (e.g., from the Address Book, Memo Pad, To Do List, Calendar, etc.), are not actually
removed and will remain on the device until a successful HotSync operation to a desktop machine.
As noted in the Comments section of the DmDeleteRecord function documentation [6], the function
“marks the delete bit in the database header for the record and disposes of the record’s data chunk.
It does not remove the record entry from the database header, but simply sets the localChunkID
of the record entry to NULL.”

This is a very useful feature for forensic analysis, since if the Palm device is acquired before the
HotSync has taken place but after records have been ‘deleted’, the data can still be recovered. A
soft reset of the device will also cause deleted records to be destroyed, unless the archive bit is set
in the database header.

4.3 Retrieval of System Passwords

The Palm OS system password is set by the user with the built-in “Security” application. The
maximum length of the ASCII password is 31 characters. In all versions of Palm OS up to 4.0, it
has been confirmed that an obfuscation or hash of the user’s system password is stored on the device
in the “Unsaved Preferences” database and is also transmitted over the serial cable, airwaves, and
networks during a HotSync operation. Depending on the version of Palm OS, the system password
is encoded and stored differently.

For Palm OS versions 3.5.2 and earlier, a weak obfuscation method is used to mask the actual
ASCII password. Regardless of the length of the ASCII password, the resultant encoded block is
always 32 bytes. Two methods are used to encode the ASCII password, depending on its length.
For passwords of four characters or fewer, an index is calculated based on the length of the password
and the string is XOR’ed (a logical operation) against a 32-byte constant block. For passwords
of more than four characters, the string is padded to 32 bytes and run through four rounds of a
function that XORs against a 64-byte constant block. By understanding the encoding schema, it is
possible to essentially run the routines in reverse to decode the password. The obfuscation process
and details are provided in [2].

11http://www.handera.com/products/cat-flashpro.asp
12http://www.brayder.com/products/jackflash.html

10

For Palm OS version 4.0, a 128-byte MD5 hash of the ASCII password is used instead of the
weak obfuscation method described above. Even though MD5 is a one-way cryptographic function
in which the hash cannot be reversed back into its original input component, it is still possible to
perform a dictionary attack against the known MD5 hash. Using a large dictionary file, each word in
the dictionary can be hashed and compared to the known hash until a match is found. This attack
is viable due to the fact that users of portable devices, especially those that have no keyboard and
require character input with a stylus (e.g., Graffiti), often choose short, easily guessable passwords.
The chance is high that the user’s password is a common word found in a dictionary.

Once the password is determined, one can further investigations by attempting to use this
password on other computer or network equipment owned by the person under scrutiny.

4.4 Telephony Applications

For devices that integrate mobile telephones with PDA functionality, additional information is
available for acquisition. For example, many phones contain call logs (which keep track of incoming,
outgoing, or missed calls) that may be stored in a database on the device. The likelihood is high
that PIN numbers, voice mailbox passwords, and other digits dialed and displayed on the device’s
screen are also be stored on the device.

For example, the Kyocera QCP 6035 smartphone13 is a tri-mode digital cellular phone that
runs Palm OS and supports multiple wireless data technologies. Other examples of Palm-based
mobile telephones include the Handspring Treo, Qualcomm pdQ, and Samsung SPH-I300. Using
pdd to image the Kyocera smartphone’s RAM and strings to extract ASCII data, an informal
investigation yielded the following information:

•Header containing the current time and date, HotSync ID, cellular telephone number, time zone,
and cellular network provider.

• Web browser cache containing HTML documents stored in plaintext.

• Electronic mail with full header information and attachments. It is possible to copy the en-
coded attachments from the strings output and convert them back into their original binary form.

• Scripts and passwords for network connections and applications.

• Speed Dial database (SpeedDialDB) containing up to 199 user-configurable, commonly dialed
name and phone numbers.

• Voice Dial database (Voice Dial DB) containing up to 30 user-configurable, commonly dialed
names and associated voice tags for hands-free dialing. Voice Memo functionality (Voice Memo
DB) is used to record, store, and play back up to 60 seconds of audio memos. Although the actual
voice tags for voice dialing and voice memos are usually stored on the telephone service provider
network (e.g., Sprint), some devices may store the actual audio in the databases.

•Call History database (CallHistoryDB) containing a phone call information log for all incoming,
outgoing, and missed phone calls. By default, the most recent 99 calls are stored for up to 7 days.
A maximum of 999 phone calls can be stored indefinitely if configured that way by the user. The

13http://www.kyocera-wireless.com/kysmart/kysmart series.htm

11

log includes the call type, time the call was placed, call length, and phone number. Each record is
70 bytes in size and appears to be structured as follows [1]:

typedef struct
{

uchar CallType; // 1 byte: 1 = Incoming, 2 = Outgoing, 3 = Missed, 7 = Data
uchar Unknown1; // 1 byte
uint TimeCallPlaced; // 4 bytes: Starting time of call in seconds since 1/1/1904
uint CallLength; // 4 bytes: Length of call in seconds
uchar Unknown2[8]; // 8 bytes
uchar PhoneNumber[52]; // 52 bytes: Number called or caller ID of incoming call

} CallHistoryDBRecord;

Each record in the CallHistoryDB has a sequentially increasing unique record ID (uniqueID as
defined in [3]). If a record is deleted, it will be apparent by the non-sequential order of unique IDs.

• Recent Calls database (RecentCallsDB) contains similar information to CallHistoryDB, and
the two databases can be compared against each other for discrepancies (e.g., erased or deliberately
modified records).

4.5 Related Work

Palm, Inc.14 has a number of useful tools available for development and debugging that could also
be used to aid in forensic analysis. The Palm Debugger, included with the Metrowerks CodeWarrior
for the Palm OS Platform suite, is the official interface to the Console and Debug Modes of the
Palm device. The Palm Debugger tool runs on a desktop machine and allows low-level interaction
with the Palm device. A complete listing of commands can be found in [5].

The Palm OS Emulator (POSER) is a desktop program that emulates the hardware of the
various models of Palm devices and essentially creates a software-based “virtual handheld”. Using
parsing tools to create a series of PRC, PDB, and PQA files from the raw memory output provided
by pdd, it would be possible to create an exact model of the target Palm device and operate the
model on POSER. As it stands, the ROM image provided by pdd can be loaded directly into
POSER. Such a system is particularly helpful to ensure the integrity of the target device (e.g.,
crime scene) while the model is used for investigative purposes.

Shortly after the premiere release of pdd in November 2001, two other Palm OS acquisition
tools became available: Paraben’s PDA Seizure15 and the Palm acquisition module for Guidance
Software’s EnCase16.

PDA Seizure uses the Palm HotSync protocol for some portion of memory imaging. Because
of this, the Last HotSync Date is modified on the Palm device. Depending on how the acquisition
process is implemented, there may be issues of only retrieving data that is known to the OS as
being a database, so the acquisition would miss obfuscated or hidden forms of data.

pilot-link17 is an open-source toolset for providing synchronization capabilities to Unix-based
machines. Included are two utilities, pi-getram and pi-getrom, which use the HotSync conduit to
capture full memory images. The Last HotSync Date is not modified on the Palm device when
using these tools.

14http://www.palmsource.com/developers
15http://www.paraben-forensics.com
16http://www.encase.com
17http://www.pilot-link.org

12

5 Summary

This work presents a new tool for memory imaging and forensic analysis of devices running the
Palm operating system. pdd retrieves and displays device information and a complete memory
image of the Palm device, which includes all user applications and databases. It provides acquisi-
tion capabilities for use by forensic investigators, incident response teams, and criminal and civil
prosecutors.

6 Availability

pdd’s Win32 executable and source code (included for research and legal verification purposes) is
currently available for free at:

http://www.mindspring.com/~jgrand/pdd

Acknowledgments

The author would like to thank Brian Carrier for his education on incident response and forensic
acquisition procedures, and Jesse Kornblum and Eoghan Casey for interesting discussions about
Palm forensics.

References

[1] D. Crocker, “callHistoryDB schema,” Palm Platform Kyocera Developer Forum e-mail list,
http://www.eScribe.com/computing/kyoceraforum/m63.html.

[2] Kingpin and Mudge, “Security Analysis of the Palm Operating System and its Weak-
nesses Against Malicious Code Threats,” 10th USENIX Security Symposium, Washington,
D.C., August 2001, http://www.usenix.org/publications/library/proceedings/sec01/
kingpin.html.

[3] Palm, Inc., Palm File Format Specification, DN 3008-003.

[4] Palm, Inc., Palm OS Memory Architecture, http://oasis.palm.com/dev/kb/papers/
1145.cfm.

[5] Palm, Inc., Palm OS Programming Development Tools Guide, DN 3011-002.

[6] Palm, Inc., Palm OS SDK Reference, DN 3003-003.

13

