

SHOT THROUGH THE HEART

- Introduction to fault injection aka "glitching"
- Intentionally cause a fault in the target device
 - Typically used against cryptographic operations or microcontroller security (debug port access / code protection)

FAULT INJECTION

FIGURE 17-2:			PIC16LF627A/628A/648A
		6.0	
	VDD (VOLTS)	5.5	
		5.0	
		4.5	
		4.0	
		3.5	
		3.0	
		2.5	
		2.0	
		(0 4
	Note:	The	shaded region indicates the perr

RESULTING BEHAVIORS

- System reset / halt
- Change in software decision
 - Skip an instruction
 - Affect branching
- Computational fault
 - Instruction decoding errors
 - Malformed data read / write

MICROCONTROLLER SECURITY

- Protects MCU internal memory, debug interfaces
 - May require fuse/register setting, password, challenge/response
 - Reduce access (allow subset of functionality)
 - Permanently" disable access
- Configured/checked during chip boot process

ATTACK VECTORS

- Timing
- Voltage
- Electromagnetic (EM)
- Optical / Light
- Body Biasing
- Other (Temperature, ???)

TIMING

- Introduce unexpected / extra / fast clock edge(s)
- Replace or mix clock / oscillator with custom circuitry

Colin O'Flynn (NewAE)

VOLTAGE

- Drop power supply below minimum (brown out)
- Target CPU core voltage for best results
- Requires target preparation to remove capacitors, access voltage rail

wallet.fail

ELECTROMAGNETIC (EM)

- Induce current onto internal chip structures
- No physical contact / manipulation required

uctures required

OPTICAL / LIGHT

- Induce photocurrents onto the silicon die
- Requires invasive access (decapsulation)

chippie.io via @BitBangingBytes

Black-Box Laser Fault Injection on a Secure Memory

BODY BIASING

- Apply voltage to exposed backside of IC die

github.com/newaetech/ chipjabber-basicbbi

Requires target preparation and usually invasive (dependent on package type)

TOOLS

- ChipWhisperer
- PicoEMP / ChipSHOUTER
- Riscure
- Ledger Donjon Scaffold
- Faultier (hextree.io)
- Raiden (h0rac)
- MCU / FPGA + MAX4619 Analog Switch

CHARACTERIZATION

- Usually triggered by external indicator or cycle counting
 - Based on a known bus / signal output
 - May require firmware / code or power / EM analysis

CHARACTERIZATION

- Requires precise tuning to determine ideal glitch parameters
 - When to glitch?
 - Width of pulse?

Replicant: Reproducing a Fault Injection Attack on the Trezor One

DEMONSTRATION

- Breaking Code Read Protection on the NXP LPC-family MCUs, Gerlinsky, **REcon Brussels 2017**
- Code Readout Protection setting in 32-bit register

Name	Value in Flash	JTAG/SWD	Serial Bootloader (ISP)	Notes
NO_ISP	0x4E697370	enabled	disabled	
CRP1	0x12345678	disabled	subset	Read memory disabled. Sector erase and mass erase possible (also removes CRP).
CRP2	0x87654321	disabled	subset	Read memory disabled. Mass erase only (also removes CRP).
CRP3	0x43218765	disabled	disabled	Claimed impossible to recover from since no reprogramming interface available.
INVALID	Any other value	enabled	enabled	

> Only 4 defined values, any other value $(2^{32} - 4)$ will result in unprotected device

RESOURCES

- The Hardware Hacking Handbook
- chip.fail (Black Hat USA 2019)
- Lennert Wouters (COSIC, Glitched on Earth by Humans)
- Wrongbaud (Matthew Alt)
- Raelize (Cristofaro Mune)
- LimitedResults
- NewAE GitHub

Taking The Guess Out Of Glitching (Major Malfunction, Nullcon Goa 2020)

SHOT THROUGH THE HEART

- General purpose MCU security == generally susceptible
- Fault injection is dependent on many external factors
 - Glitch type
 - Glitch parameters (timing, width)
 - Environment (cable lengths, temperature)
 - Manufacturing variances in silicon
- When it works, it feels like magic

