
Authentication Tokens: Balancing the Security
Risks with Business Requirements

Joe Grand
kingpin@atstake.com

@stake, Inc.
196 Broadway

Cambridge, MA 02139
www.atstake.com

September 19, 2001

Stolen passwords represent a significant threat to today’s enterprise. It has
become apparent that a simple username and static non-changing password
combination to login to a system is not adequate to protect most business
information. As the corporate network is increasingly used to store dis-
parate levels of company confidential information, there is a need for user
access control. The theft of a user’s password or other static credentials is
succeeded by network monitoring, social engineering, or other means.

The classic problems of user authentication are: How can you prove you
are who you say you are? Is the user accessing data or logging into the
system really the person who has been granted the right to do so? Authen-
tication tokens attempt to help solve these problems by reducing the risk of
static password sniffing and other spoofing or cloning threats. The use of
authentication tokens has replaced the simple username/password model in
a wide variety of network infrastructure configurations, ranging from fine-
grain control to ubiquitous network access.

Tokens are hardware or software devices that generate dynamic one-time
passwords through the use of a mathematical function. Passwords generated

∗@stake RR2001-04
†Product and company names mentioned in this article may be trademarks of their

respective owners.

1

by tokens are different each time the user requests one, so an intercepted
password is useless as it will never be used again. Along with the password
generated by the token device, the user can still provide a username and pos-
sibly an additional static password or personal identification number (PIN).
Token devices come in many shapes and sizes, ranging from key chain- to
calculator-sized hardware devices to software programs running on personal
digital assistants (PDAs) or desktop computers.

The security risk scenarios vary depending on token technology (hard-
ware v. software), business needs, and implementation/deployment strate-
gies. Consider a scenario in which software-based authentication tokens are
deployed and become compromised by an attacker who is now able to gen-
erate the proper authentication to login as the legitimate user:

Each employee at Company X has a PDA (such as a Palm or PocketPC
device) or access to a desktop or laptop computer. This is convenient for the
company since it is not necessary to distribute a dedicated hardware device
to each user. To deploy a software-based solution, the system administrator
generates a specific configuration file for each user. This typically contains
the username, PIN, a secret data component used in the mathematical al-
gorithm to create the one-time-passwords, and a unique identification value
to enable the server to match the user to the system. The configuration
file is given to the user by the administrator and loaded onto the PDA or
computer. The data in the configuration file should only be known by the
token software and the server. If the configuration file is obtained by an at-
tacker, the authentication token can be cloned, therefore compromising the
identity of the legitimate user. Continuing with this example, one employee
leaves his unprotected PDA on his desk while he takes a coffee break. A
malicious insider, noticing that the employee has left, copies the configura-
tion file to his own PDA (which could be achieved using the infrared port of
the device), taking only a matter of seconds. On software-based systems, it
is trivial to retrieve data through either standard functionality or common
debugging techniques. The attacker now has a copy of the legitimate user’s
configuration file and can retreat to another location to perform additional
analysis to clone the token. This entire attack goes undetected by the legit-
imate user, who notices nothing different with his PDA. However, it is now
possible for the attacker to generate the proper credentials identical to the
legitimate user.

2

1 Business Analysis

Security product vendors are heading towards a slippery slope in which
marketing and industry fads often play a larger role than security and busi-
ness purpose in the design process. If the risks of using software-based
token devices cannot be managed or mitigated by either the vendor or user,
the product should not be used in the environment presenting those risks.
Hardware-based systems are generally considered by security professionals
to be capable of greater security than their software counterparts. However,
a system that is capable of being more secure does not always mean it is.

1.1 Managing Risk: What Is Being Protected?

Threat modeling and risk assessment are the first steps in deciding on a
particular security solution [12]. To decide upon a hardware- or software-
based technology requires a thorough understanding of the attack profile
and needs of the business. Some questions to ask when considering an
authentication token technology are as follows:

• Why is this technology being deployed for the business?

• What is the current access control methodology employed, if any?

• What is the type of access or data being protected?

• How does this type of authentication technology impact the business?

• Are there to be remote users outside of the trusted network?

• What are the perceived threats? Internal or external?

• Are there plans for future expandability?

• Are there any other methods of access control needed (through which
hardware devices can be consolidated)?

Tony Walker, Vice President of Development at CRYPTOCard Corpo-
ration, comments that “there is a strong market demand for this [software]
type of device. We do point out to our customers that these tokens are
inherently weaker than the hardware tokens, but many customers choose to
use them anyway because of the convenience they offer. As you are well
aware, all security is a matter of cost – the cost of breaking it versus the

3

value of the material obtained. It is up to the individual customer to eval-
uate the trade-offs and make this choice.” [7]

It is indeed necessary to understand what data or system infrastructure
needs to be protected before a choice of authentication token technology is
decided upon. For example, are hardware tokens being used to protect a
simple stand-alone computer where the cost of data loss will be minimal?
Are software tokens being used to protect critical portions of your network
infrastructure? The trade-offs and middle ground lie between the sensitivity
of the data being protected and the likelihood of attack on the actual token
device. Deciding on an authentication technology based solely on employee
preference or ease-of-use without considering the risks is not addressing the
business concern.

“When deploying any security system, there are often trade-offs between
security and convenience. Organizations must balance the value of the infor-
mation being protected with ease-of-use and cost issues to deploy a system
that is appropriate for their needs. The reality is that a system that is ‘se-
cure enough’ and used by a large number of people, may be more valuable
than a highly secure system that is only implemented by a few. Because
organizations have different levels of risk, multiple solutions are needed with
varying levels of security strength,” said Willy Leichter, Product Marketing
Manager at Secure Computing. [8]

For infrastructures requiring high levels of security, token vendors are
recommending the more expensive hardware tokens. For environments that
do not justify this expense, software tokens are often chosen.

2 Cost and Deployment Analysis

Deployment cost of authentication tokens can be divided into three stages
comprising the Total Cost of Ownership (TCO):

• Stage 1: Immediate cost (initial deployment)

• Stage 2: Support/Maintenance cost (on-going)

• Stage 3: Remediation cost (e.g., revoking and reissuing of token de-
vices after an attack or loss of device)

4

Figure 1 shows cost impact over time, with the three stages identified.1

The price structure will vary depending on vendor and product type, but
usually hardware tokens are significantly more costly than software tokens,
due to the fact that they are physical products that require their own man-
ufacturing and testing processes. The price of software tokens will often be
significantly less because no special hardware is required. This comes at a
potential cost of lower overall tamper resistance.

In a large-scale corporation of 10,000 employees, initial deployment costs
(Stage 1) including access control software and server-side infrastructure
could run upwards of $1 million. For a typical hardware token deployment
this example will assume a cost of $80 each, which is an average calculated
from multiple vendors’ token prices. For a typical software token deploy-
ment, the cost-per-token is smaller ($60 on average), since the token appli-
cation is simply a piece of software running on a device the user already
owns (such as a laptop or PDA). This translates to a $200,000 reduction in
token device cost for this scenario based solely on technology selection.

On-going support costs (Stage 2) remain fairly consistent between token
technologies. The server-side software remains the same regardless of token
technology used. Failures with a hardware or software token can simply
be fixed by replacing the device or application. The maintenance cost of
replacing a broken hardware token is negligible due to product warranties
offered by the token vendors (upwards of 5 years).

One major cost area is related to remediation and redeployment (such
as a company’s change in token technology after there has been a security
breach or after a device has been lost). Replacing a lost hardware token may
entail paying full price for a new token compared to a software environment
where the application can simply be reinstalled onto the system. The risk
of losing a software-based token (running on a desktop, laptop, or PDA) is
arguably less than losing the small, keychain-sized hardware devices.

A redeployment example (Stage 3) may consist of switching to a hard-
ware-based technology after a successful attack on the software-based de-

1Some token vendors are beginning to offer “Token Deployment Services” to provide
deployment, configuration, and maintenance support to the end-user. Because it is not
known how these services affect TCO and time issues, they are not taken into account in
our analysis. We assume the end-user organization has total responsibility of the system.

5

vices. One could argue that if a single software token has been compromised,
others are likely to follow because of the simple, repeatable nature of soft-
ware attacks. This puts the entire authentication system at risk. If software
tokens are deployed first and a switch is then made to hardware tokens, the
average cost of the authentication token system increases. By using hard-
ware tokens from the start, the software-related security problems become
moot; hence, the risk of successful attack becomes much smaller (Section 3
examines this claim in detail). There is the additional cost of deploying
hardware tokens from the beginning with the trade-off that hardware token
technologies are not as frequently attacked as their software counterparts.
This is a classic example of risk management.

Stage

C
os

t

1 2 3

Figure 1: Deployment cost impact for each stage – hardware (dashed) v.
software (solid).

2.1 Time Requirements for Deployment

Software-based tokens have an advantage over hardware-based tokens due
to the time necessary to deploy. Deployment time for software-based tokens
can be considerably reduced, especially if the software platform is already
being used by most or all of the employees (e.g., laptops or PDAs). Many
times, deploying software-based tokens is as simple as the administrator or
user installing the client application software on the device and the adminis-
trator creating a configuration key for each specific user. The configuration
key, often containing the user-specific identification and credentials, can be

6

distributed electronically (e.g., secure/encrypted e-mail or a central soft-
ware distribution site internal to the corporation) in minimal time. There
is small, if any, disruption to the organization if roll-out is handled efficiently.

Deploying a hardware device requires a physical interaction with every
employee. Due to scheduling conflicts, multiple office sites, and employee
travel, it may constitute a substantial time investment to meet with each
employee and deploy the hardware-based tokens. The larger the corporate
infrastructure and user base, the longer hardware deployment will take. For
a software-based system, the deployment time will remain much more con-
stant, since the time to meet with each employee is not required and the
configuration keys can be distributed electronically. Software-based config-
uration keys can also be deployed in a face-to-face manner as with hardware
tokens, which would require the same significant amount of time. However,
a face-to-face distribution avoids using the current network infrastructure
which could be insecure (and may be the reason an authentication system
is being implemented).

Figure 2 submits that the amount of time required for face-to-face de-
ployment of a hardware- or software-based system will increase linearly as
the number of users grows, largely due to the need to physically meet each
employee and distribute the tokens or configuration keys.

Number of Users

T
im

e

Figure 2: Deployment time – hardware/software face-to-face (dashed) v.
software electronic distribution (solid) after initial system setup and config-
uration.

7

Management time (initial server setup, configuration, and on-going sup-
port) will be similar for either token technology and depends more on the
ease-of-use of the vendor’s administration interface. Management time may
also increase due to the size of the deployment.

3 Security Analysis

Software applications lack the protective mechanisms often found in dedi-
cated hardware devices (e.g., tamper proofing and physical encapsulation of
critical circuitry). Reverse engineering techniques, such as extracting pro-
gram code and disassembly/debugging methods, are simplified greatly in a
software environment, allowing a token’s secret components such as crypto-
graphic algorithms, private keys, and other assumed secure information to
be recovered.

Due to portable devices (such as Palm and PocketPC) becoming com-
monplace in the industry [6], vendors of hardware tokens are developing
software-based versions for use on such devices. Software token applica-
tions also exist on desktop systems which usually have network connectivity
(allowing for additional attack vectors). Regardless of the fact that these
devices can now provide access to critical corporate assets, they are often
left unattended and unprotected.

3.1 Hardware v. Software Trade-offs

Software tokens provide convenience because they operate on a platform
that the user already has access to, such as a laptop or PDA. They do not
require owning an application-specific piece of hardware and do not add an-
other piece of equipment that could be lost or stolen. Software tokens allow
the execution of an application on a previously secure device to be embodied
on an insecure platform. Methods to determine program operation are much
easier in this fashion, making the software tokens less secure and causing a
weak link in the security chain.

Hardware token devices often contain tamper detection mechanisms that
software-based devices lack, and will sometimes erase critical information
from the device if physical tampering is detected [3] [4] [11]. This is not to
say that dedicated hardware-based devices are immune to attack and do not
contain security design flaws [1] [14]. However, the difficulty and required

8

cost to attack is increased.

The availability of free and commercial decompilers for software token
environments such as Windows, Palm OS, and Java makes the software re-
verse engineering task a more likely one than hardware counterparts. Most
software-based token devices have been publicly available for a relatively
short period of time. It is likely that, given the known insecurities and
problems with software devices, attacks on the software-based authentica-
tion technologies will become more commonplace.

Tables 1 and 2, consisting of a small sampling of the available authenti-
cation token devices, show that software-based devices currently lay claim to
most of the security-related flaws compared to dedicated hardware devices.2

The primary and often easily provable concern for software tokens is
the possibility of extracting secret component and PIN information from
a legitimate token, which can lead to a complete cloning of the device by
an attacker. The cloning of software-based tokens has been demonstrated
with two products [7] [8]. The extraction of a token’s proprietary tokencode
generation algorithm has also been achieved [15]. Once the cryptographic
algorithm of the authentication device has been determined, further analy-
sis of the product can take place [10]. Possible flaws in the algorithms may
uncover repeating sequences of tokencodes or the capability to determine
secret components or future tokencodes by viewing previously generated to-
kencodes.

Although it is difficult to completely protect credentials and algorithms
stored on a software-based device, there are always ways to improve the secu-
rity. It is recommended that vendors properly encrypt and salt credentials if
they must be stored on the device. Simple obfuscation and transforms that
can be reversed or brute-forced lull the user into a false sense of security
and show a lack of concern about security from the vendor. The use of a
salt minimizes the possibilities of a password being represented in the same
fashion on multiple systems. A method such as “cryptographic camouflage”
could also be implemented [5].

2These tables contain a selection of authentication token device vendors used simply
for demonstrative purposes. It is not a comprehensive listing of all one-time password
token vendors. Other such vendors include VASCO, ActivCard, and Symantec.

9

In a software environment, the application inherits the same level of se-
curity as the operating system it is running on. Regardless of how data
may be salted or encrypted, ultimately it must be decrypted for processing
and stored in plaintext in device memory (which may be accessed by an
attacker). There are too many factors and uncontrollable circumstances of
the software environment to place trust in a software-based token device.

Vendor Token Name Released3 Publicly Known Security Issues

CRYPTOCard RB-1 1994 None
KT-1 Nov 1999 None

RSA Security SecurID 1986 None

Secure Computing SafeWord Platinum pre-1992 None
SafeWord Silver 2000 N/A None
SafeWord Gold 3000 2001 None

Table 1: Hardware Tokens: Release Dates and Security-Related Public An-
nouncements

Vendor Token Name Released3 Publicly Known Security Issues

CRYPTOCard ST-1 Java Nov 1997 None
PT-1 Palm OS v1.04 Nov 1999 Can clone token, Apr 2000 [7]

RSA Security SoftID 1996 Algorithm released, Dec 2000 [15]
Potential weaknesses, Jan 2001 [10]

SecurID Palm OS Apr 1999 None
SecurID Nokia 9210 Dec 2000 None
SecurID Ericsson R380 Nov 2000 None

Secure Computing SofToken PC Feb 1995 None
SofToken Kyocera pdQ May 2000 None
e.iD Palm OS v2.0 Mar 1999 Can clone token, Dec 2000 [8]
e.iD Windows CE N/A None
e.iD Ericsson R380 Sep 2000 None

Table 2: Software Tokens: Release Dates and Security-Related Public An-
nouncements

3The data refers to the initial release version of the token product unless otherwise
noted. Release dates and version numbers are shown to distinguish the listed products
from future products and updates. This allows vendors to attach appropriate version
numbers to updated products, if they exist, in order to avoid end-user confusion.

10

4 Conclusions

The CERT Coordination Center [2], the Common Vulnerabilities and Expo-
sures Project [9], and the BUGTRAQ Vulnerability Database [13] show the
large number of attacks on software and software-based technologies. Hard-
ware attacks are less common. However, administrators and users should
not be complacent simply because they implement hardware-based authen-
tication devices instead of software-based ones.

The educated selection of an authentication token technology depends
on a number of factors, including risk management, business needs, TCO
issues, and security. No single technology will provide the ultimate solution
for every situation, and there are advantages and disadvantages to the use
of each type. Care needs to be taken to ensure that the product is carefully
analyzed before it is deployed in a particular organization’s infrastructure.

References

[1] R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant
Devices,” Security Protocols, 5th International Workshop, 1997.

[2] CERT Coordination Center, “CERT/CC Statistics 1988-2001,”
http://www.cert.org/stats/cert_stats.html

[3] D. Chaum, “Design Concepts for Tamper Responding Systems,” Ad-
vances in Cryptology: Proceedings of Crypto ’83, 1984.

[4] A. J. Clark, “Physical Protection of Cryptographic Devices,” Advances
in Cryptology: EUROCRYPT ’87, 1988.

[5] D. N. Hoover and B. N. Kausik, “Software Smart Cards via Crypto-
graphic Camouflage,” IEEE Symposium on Security and Privacy, 1999.

[6] IDC, “Market Mayhem: The Smart Handheld Devices Market Forecast
and Analysis, 1999-2004,” Report 22430, June, 2000.

[7] Kingpin and DilDog, “CRYPTOCard PalmToken PIN
Extraction,” @stake Security Advisory, April 10, 2000,
http://www.atstake.com/research/advisories/2000/cc-
pinextract.txt.

11

[8] Kingpin, “SafeWord e.iD Palm Authenticator PIN Ex-
traction,” @stake Security Advisory, December 14, 2000,
http://www.atstake.com/research/advisories/2000/a121400-
1.txt.

[9] The MITRE Corporation, “Common Vulnerabilities and Exposures,”
http://cve.mitre.org/cve/index.html

[10] Mudge and Kingpin, “Initial Cryptanalysis of the RSA SecurID Algo-
rithm,” January 2001, http://www.atstake.com/research/reports/
initial_securid_analysis.pdf.

[11] National Institute of Standards and Technology, “Security Require-
ments for Cryptographic Modules,” FIPS 140-1, January 1994,
http://www.itl.nist.gov/fipspubs/fip140-1.htm.

[12] B. Schneier, “Secrets & Lies,” Chapter 19: Threat Modeling and Risk
Assessment, John Wiley & Sons, 2000.

[13] SecurityFocus.com, “BUGTRAQ Vulnerability Database Statistics,”
http://www.securityfocus.com/vdb/stats.html

[14] S. H. Weingart, “Physical Security Devices for Computer Subsystems:
A Survey of Attacks and Defenses,” Workshop on Cryptographic Hard-
ware and Embedded Systems, 2000.

[15] I. C. Wiener, Sample SecurID Token Emulator with To-
ken Secret Import, BugTraq posting, December 21, 2000,
http://www.securityfocus.com/archive/1/152525.

12

