
Attacks on and Countermeasures for
USB Hardware Token Devices∗

Kingpin

@stake, Inc.

196 Broadway, Cambridge, MA 02139, USA.
http://www.atstake.com

E-mail: kingpin@atstake.com

Abstract. This paper presents the methods used to attempt access to
private data stored in Universal Serial Bus (USB) hardware tokens
without having legitimate credentials. We look at the current state-of-the-
art products of the commercial world. Our research is based on an
approach of using only common, off-the-shelf tools, yet we still succeed in
defeating the security features and gaining access to private data. The
focus is on three major attack categories: Mechanical, Electrical, and
Software. We also examine other areas that may be susceptible to attack.
Countermeasures and design changes that will enhance the security of
such devices are proposed.

Academic papers describing the design of secure hardware devices have
existed for over two decades [1, 2, 3]. Applying these approaches into real-
world products, however, requires an understanding of the threat model
and security envelope of the product being designed. Improper
implementation can lead to avenues of attack as described in this paper.

Keywords: security, attack methods, countermeasures, analysis,
hardware token, USB, secure hardware design

1 Introduction

This paper documents investigations into the mechanical, electrical, and
software design of multiple vendors' USB hardware tokens (Figure 1). The
main focus of the analysis is to access a legitimate user's private data on the
key without having the proper credentials. We strive to educate both users and
vendors about the need to implement forward-thinking security measures into
their products and how to analyze a product to compare its perceived security
to its actual security. It in no way describes all possible attack methods.

USB hardware tokens are a new breed of portable devices that are being
used in security and public key application spaces and are beginning to attract
attention by the computer security industry. They perform as authentication
devices and store private keys, passwords, or electronic certificates in a

∗ This paper has been published by Reykjavik University in the Proceedings of the Fifth
Nordic Workshop on Secure IT Systems Encouraging Co-operation, Reykjavik, Iceland,
October 12-13, 2000, pp 35-57, ISBN 99799483-0-2.

 2

hardware token the size of a house key. USB keys make use of two-factor
authentication in order to grant access to the private data stored within the
key. Using the legitimate user's Personal Identification Number (PIN) or
password, access to the key's data will be granted.

Section 2 examines attacks related to the mechanical design of the
products. This involves manipulation of the physical device housing in order to
gain access to the circuit board and other device internals. Section 3 details the
invasive electrical attacks which require access to the device's electronic
circuitry. Section 4 details the non-invasive software attacks in which one could
examine the communication channels between the USB device and host
computer. In each section, design changes and preventative measures that will
enhance the security and reduce the risk of unauthorized attacks are discussed.

The following devices have been analyzed:

§ Aladdin Knowledge Systems' eToken1 R1. [4]
§ Rainbow Technologies' iKey2 1000. [5]
§ Rainbow Technologies' iKey 2000. [6]

Figure 1: Aladdin Knowledge Systems' eToken R1, top, and

Rainbow Technologies' iKey 1000 and 2000, bottom.

2 Mechanical Attack

The main goal of mechanical attacks is to gain access to the product internals.
Tamper-proofing features are often designed into products to prevent or detect
invasive attacks [1, 2, 3].

1 eToken™ is a trademark of Aladdin Knowledge Systems Ltd. Due to naming convention
confusion, the eToken 3.3.3.x device is actually denoted as the eToken R1 (not to be
confused with the newer Token R2 or eToken Pro devices). This paper has been updated
accordingly (November 16, 2001).
2 iKey™ is a trademark of Rainbow Technologies, Inc. Rainbow Technologies has stated
that iKey 1000 devices created after November 1999 have been modified to mitigate some
of the attacks described in this paper. We have not verified this claim.

 3

To further the electrical attacks (Section 3), physical, invasive access to the
USB key circuit board is required. In all devices that were examined, no
obvious attempts at tamper-proofing were evident and it was possible to open
the physical housing and gain access to the printed circuit board without any
signs of forced entry.

2.1 Case Study of eToken

The eToken device uses glue to keep the two pieces of the plastic housing
together making disassembly moderately difficult. However, the glue can be
weakened by heating the housing and careful prying will open the device.

The complete disassembly and reassembly process can be performed in
under 30 minutes (Figure 2). A highly practiced attacker could complete the
process in under 10 minutes. The only tools required for the attack are a hobby
knife, heat gun, glue, and pliers.

Figure 2a: Heating the key's tail to
soften the glue.

Figure 2b: Using a knife to pry open
the tail of the housing. This gives an
entry point to pry open the side of
the housing.

Figure 2c: After more heating,
scoring and prying of the side.

Figure 2d: Successful penetration of
the housing and easy removal of the
key's circuit board.

 4

Figure 2e: After the electrical
attack is complete, applying glue to
both sides of plastic housing.

Figure 2f: Top view of reassembled
key. No evidence of tampering is
visible.

2.2 Case Study of iKey 1000, 2000

The iKey devices use "socket and post"-type mechanical features press-fit into
each other to keep the two pieces of the plastic housing together (Figure 3). The
metal housing of the USB connector assists by serving as a clamp. Removing
the metal USB connector housing and prying carefully with a hobby knife was
sufficient to open the device.

Figure 3: iKey plastic device housing with arrows denoting
"socket and post" features.

The opening of both iKey devices is simple and can be performed in under

30 seconds with household tools (Figure 4). Since no cutting or scoring is
required to loosen the housing, the chance of visible damage to the housing is
minimal.

 5

Figure 4a: Lifting the four tabs of the
metal USB housing.

Figure 4b: Removal of the metal USB
housing.

Figure 4c: Prying of the plastic
housing.

Figure 4d: Successful opening of the
housing.

Figure 4e: Removing the key's circuit
board from the 4 "fingers" of the USB
connector.

Figure 4f: Removal of tape wrapped
around the circuit board. This may be a
tamper-detection attempt, but the lack
of tape is not visible when the device is
properly closed.

 6

2.3 Mechanical Device Variances Between eToken and iKey

"Cost versus risk" management plays a large role in security product design.
Depending on what subsystems the vendor is trying to protect, various security
features will be designed into the product. The investigation of the two USB
key vendors yields the following matrix:

Device Difficulty To Penetrate

Housing
Protection of Internal

Circuitry
eToken R1 Moderate None
iKey 1000 Easy Moderate (Epoxy)
iKey 2000 Easy Moderate (Chip-on-Board)

The two vendors took different routes in addressing mechanical security.

The eToken has a mechanical design which makes opening the device
moderately difficult, while the iKey has no physical protection. However, once
the eToken was opened, its circuitry was completely unprotected making
probing and analysis trivial, while the iKey uses epoxy encapsulation and
obfuscates part numbers to deter attackers.

2.4 Mechanical Design Recommendations

The design of secure hardware devices is a topic in itself. However, a few key
points can be made related directly to the mechanical design of portable devices
that are especially prone to tampering and attack such as USB hardware
tokens:

§ Strong, High-Temperature Glues with a very high softening/melting

point increase the security of the physical housing and serve as a tamper-
evidence feature. Many glues used by today's product manufacturers soften
under direct heat, which aids in housing disassembly.

§ Mechanical Features such as snap-fits and one-piece designs increase
the security of the physical housing. They not only strengthen the design
by serving as reinforcements or structural supports, but could also make
the housings difficult to re-open after manufacturing has been completed.
A wide variety of mechanical features can be put into the design,
depending on the product type and the goal of the protection.

§ Obfuscation of Part Numbers makes reverse engineering of the
circuitry more difficult, but does not eliminate the possibility.

High-temperature glues and mechanical features are recommended for

plastic housings that "snap fit" together. With the eToken, heating the key
evenly softened the glue enough to gently cut open. The use of high-
temperature glue would have increased the security here. There were two
mechanical features holding the two plastic pieces together. Even if those are

 7

broken during disassembly, they are only visible from the inside of the housing
and no anomalies are seen when the device is glued back together.

3 Electrical Attack

The electrical attacks mounted against the USB keys require physical access to
the device's circuit boards. The primary goal was to attempt to access the
private data, which is supposed to be protected by the legitimate user's PIN
number or password, without detection by the legitimate user. External
memory components, which are non-volatile storage areas that can be read and
written with low-cost or homebrew device programmers, were targeted for
attack.

The electrical design of both USB keys is standard and simple, consisting
of a microprocessor with USB support, external memory, and "glue" circuitry.
Currently, there are few microprocessors available that have internal USB
support, which leads to many similarities in the electrical designs of USB
devices.

A design flaw common to the USB keys examined is the improper storage
of password values, which can allow the extraction of all data, including private
information, from the key [7, 8]. Changing the password value which is stored
in an external Serial Electrically Erasable Programmable Read-Only Memory
(EEPROM) will allow access to the device and will allow an attacker to extract
all private information from the key. Changing the password back to its
original value after attack will prevent any detection by the legitimate user.

Serial EEPROMs are extremely common in the engineering industry and
require minimal circuitry to read and write. They are also notoriously insecure
and often do not provide any type of security features. Due to the nature of
Serial EEPROMs, it is possible to attach a device programmer to the device,
while it is still soldered onto the circuit board, and read and write to it at will.
Given these known weaknesses, it behooves vendors to take steps in properly
restricting access to Serial EEPROMs when employed in security-related
devices.

The experiments described in this paper were carried out using the
Needham's Electronics' EMP-30 [9] which has a retail price of $995, although a
homebrew device programmer could be built with a handful of components for
under $10. Other device programmers are available from a number of
companies, ranging in cost from $25 to $1000. The prices are noted here in an
effort to gauge the level of perceived threat.

 8

3.1 Case Study of eToken

VCC

VCC

VCC

VCC

VCC

VCC

U3
MAX809J 1

23

G
N

D

RESETVCC

U2

AT25640-2.7/SO

1

2

5

4

7 6

3

8
CS

SDO

SDI

GND

HOLD SCLK

WP

VCC

U1

CY7C63001A-SC

1

2

3

4
5

6

9

10

11

13

14

15

16

17

18

19

20

12 8

7

P0.0

P0.1

P0.2

P0.3
P1.0

P1.2

CEXT

XTALIN

XTALOUT

D-

D+

P1.3

P1.1

P0.7

P0.6

P0.5

P0.4

VCC VPP

VSS

X1
6.0MHz Ceramic

D1 LED

J1

USB Series A

1
2
3
4

5
6

VCC
D-
D+
GND

SHLD
SHLD

R1
1.5k

Enable /WP during power-up for 140mS

Low-speed peripheral, 1.5Mb/s

Figure 5: Electrical schematic of the eToken R1 PCB version 4.3a

Because the Cypress CY7C63001 microprocessor [10] isn't protected by any
encapsulation (Figure 6), commercial and homebrew techniques could be used
to remove the top of the integrated circuit (IC) housing and gain direct access to
the die, thus allowing a determined attacker to extract the firmware of the
device [11, 12]. This type of attack requires a sizeable initial investment of
effort and equipment, thus reducing the likelihood that a less determined
attacker will take advantage of the situation. It was not performed for this
paper. Having access to the firmware of the USB key often proves to be
extremely useful. Analysis of the code can determine the exact operation of the
device, programming errors, and any hidden features or backdoors - any of
which could be used to launch further attacks.

The first attack attempted was to read the firmware programmed into the
microprocessor. This was thwarted by the security bit being set in the device.
Using the security bit, a common feature in microprocessors, the device will
prevent a user from either reading or writing the device firmware.

The 64-bit unique serial number associated with each eToken device is
hard-coded into the Cypress microprocessor firmware. This is a good design
feature, as it makes exact device cloning difficult, since the firmware is write-
only and protected inside the microprocessor.

 9

Figure 6: eToken R1 PCB version 4.3a, top: front, bottom: back.

All data on the eToken USB key is stored in external memory. The 8KB
version of the eToken uses an Atmel [13] 25640 Serial EEPROM. If requested
by the customer, Aladdin Knowledge Systems can provide them with eToken
devices with memory sizes up to 64KB. To read the contents of the Serial
EEPROM, we simply attached the leads to a device programmer. This was done
using a homebrew cable with an 8-pin Dual In-line Package (DIP) footprint on
one side, to connect to the device programmer, and a 16-pin Small-Outline
Integrated Circuit (SOIC) clip on the other side, to connect to the EEPROM in-
circuit on the printed circuit board (PCB).

The memory map (Figure 7) of the Serial EEPROM was determined by
modifying and reconfiguring the eToken data and viewing the content changes
in the EEPROM.

Common Identifier

User PIN

Administrator PIN

Default PIN

FAT / File System
Header Info

Private Data
(Encrypted)

Secret Data
(Encrypted)

Public Data
(Cleartext)

$0000

$1FFF

$0 - $F

$10 - $17

$18 - $1F

$20 - $27

Ranges configured
by administrator

with eToken tools

Figure 7: eToken Atmel 25640 Serial EEPROM Memory Map

 10

During analysis of the external Serial EEPROM, it was found that the
legitimate user's PIN can be reset back to the default PIN by simply copying a
particular 8-byte string from one area of the unprotected external memory to
another. This is explained in detail shortly. If necessary, the legitimate user's
original PIN can be copied back into the external memory after the attack and
no evidence of tampering will be apparent.

There are two PIN numbers associated with each eToken device, allowing
either User or Administrator access. User access has complete control of the
eToken file system, while Administrator is allowed to initialize the key, but not
access private data. The User and Administrator PINs, private data, and secret
data are encrypted before being stored in the EEPROM. The public data is
stored in plaintext and can be easily read by viewing the buffer of the Serial
EEPROM.

The 8-byte strings which determine the User and Administrator PINs are
stored at location 0x10 and 0x18, respectively (Figure 8). By copying the 8-byte
string stored at 0x20 into either of those areas, we return either the User or
Administrator PIN to its default state (Figure 9). The 8-byte Default PIN string
(an encrypted string representing the ASCII version of the default PIN) is
unique for each eToken.

00000010 7235 BAA8 5778 DE97 B7DD 9F01 121B 27A7 r5..Wx........' .
00000020 BE74 503B 3751 FA74 FFFF FFFF FFFF FFFF .tP;7Q.t........

User PIN Admin PIN

Default PIN string

Figure 8: Initial memory dump, with the User PIN and Administrator PIN
set to unknown values.

00000010 BE74 503B 3751 FA74 B7DD 9F01 121B 27A7 .tP;7Q.t......' .
00000020 BE74 503B 3751 FA74 FFFF FFFF FFFF FFFF .tP;7Q.t........

Figure 9: Memory dump, after modification, with User PIN now set to default.

Once the modified buffer is programmed back into the Serial EEPROM, the

attacker can login to the eToken using the default PIN and make use of the
legitimate user's credentials.

The ASCII version of the default PIN is 0xFFFFFFFFFFFFFFFF, which is 8
bytes of 0xFF, a non-printable character [14]. To enter the default PIN at a
dialog box on a Windows platform, hold the "Alt" key while typing "0255".
Release the "Alt" key between characters. Repeat this 8 times.

 11

A proof-of-concept tool [7] was developed to demonstrate the following
functions:

§ Search USB ports for eToken.
§ Retrieve and display configuration data for the inserted key.
§ Login as User using the default PIN of 0xFFFFFFFFFFFFFFFF
§ Retrieve all public and private data and export the directory hierarchy

to DOS.

The tool expects that the eToken User PIN has been reset to the default

state, as described earlier in this section. A portion of the console output is
shown below:

tokenId = 00 00 00 00 00 00 a6 23
slotid = 5
isConfigured = 1
verMajor = 3
verMinor = 27
color = 0
fsSize = 8088
publicSize = 3796
privateSize = 2576
secretSize = 512
freePublicSize = 2784
freePrivateSize = 2446
freeSecretSize = 496
secretGranularity = 16
fat = 10
maxfat = 100
maxAdmin = 255
maxUser = 255

Attempting eToken User login with Default PIN...Success!

dir = 3f00
file = a000
file = 1234
file = 6666
dir = feed
dir = beef
file = beef
dir = dead
file = beef
dir = face

 12

3.2 Case Study of iKey 1000

VCCMEM_VCC

MEM_VCC

MEM_VCC

VCC

VCC

VCC

MEM_VCC

VCC

MEM_VCC

VCC

SDA

SCL

D2
DIODE

R4 0 ohm

R5 0 ohm

R6 0 ohm

U1

CY7C63101A-QC

1

2

3

4 5

6

9

10

11

12

13

14

15

16

19

20

21

22

23

24

7

18

8

17

P0.0

P0.1

P0.2

P0.3 P1.0

P1.2

VSS

VPP

CEXT

XTALIN

XTALOUT

VCC

D-

D+

P1.3

P1.1

P0.7

P0.6

P0.5

P0.4

P1.4

P1.5

P1.6

P1.7

R3
8.2k

U2

24LC64

1

5

3 4

7

6

2

8

A0

SDA

A2 GND

WP

SCL

A1

VCC

U3

24LC64

1

5

3 4

7

6

2

8

A0

SDA

A2 GND

WP

SCL

A1

VCC

C1
10uF

R2
5.1k

R1
5.1k

X1
6.0MHz Ceramic

C2
CAP NP

C3
CAP NP

J1

USB Series A

1
2
3
4

5
6

VCC
D-
D+
GND

SHLD
SHLD

D1 LED

Unpopulated

Address = 000

Address = 001

Low-speed peripheral, 1.5Mb/s

Unpopulated

Unpopulated

Configuration Lines

Epoxy coated

Epoxy coated

Figure 70: Electrical schematic of the Rainbow iKey 1000 PCB 106160-003

The iKey (Figure 11) has epoxy conformal coatings over all of the IC's on the
PCB. This increases the difficulty of an electrical attack and is a common
deterrent which should be employed in most situations. A determined attacker
might still remove this coating by using chemicals or by prying and scraping
with a knife, both of which are visually evident. As will soon be shown, it is
essential to understand the perimeter of security and how such deterrents take
or fail to take into account what they are protecting.

All data is stored on a Microchip [15] 24LC64 Serial EEPROM, which is
covered by the epoxy coating. This particular version of the iKey has 8KB of
external memory. However, the printed circuit board allows for an expansion to
128KB. Because of this, there is an unpopulated area for the memory, shown on
the back of the circuit board. This design flaw is used to access the "protected"
Serial EEPROM. This will now be explained in more detail.

 13

Figure 11: iKey 1000 PCB 106160-003, top: front, bottom: back.

The Microchip 24LC64 Serial EEPROM devices use the Inter-Integrated

Circuit (I2C) bus protocol for a minimal number of connections to transfer data
between itself and the host:

§ Power, VCC. Common to all devices attached to the bus.

§ Ground, GND. Common to all devices attached to the bus.

§ Serial Data, SDA. Bi-directional pin used to transfer addresses and data
into and data out of the device. Common to all devices attached to the bus.

§ Serial Clock, SCL. Used to synchronize the data transfer to and from the
device. Common to all devices attached to the bus.

§ Write Protect, WP. Used to protect the contents of the external memory.
If pulled high, one is prevented from writing to the memory. Read
operations are not affected.

§ Address Select Lines, A2, A1, A0. Used for multiple device operation to
allow up to 8 devices (23) on the I2C bus. The host processor sends the
address of the external memory device it wants to communicate with along
with the command to the I2C bus. Whichever Serial EEPROM is configured
for the same address is selected for use.

By attaching probes or soldering small leads to the unpopulated memory

footprint, the power, ground, clock, and data lines of the I2C bus can be
accessed. Even though the external Serial EEPROM being targeted is
physically coated and its actual pins are not accessible, the contents can now be
read by attaching the leads to a device programmer. While attaching probes to
the memory is more difficult when the tamper-proofing features are correctly
implemented, in this case there is a clean avenue of communications available
over the I2C bus which is free of any preventative measures. To remedy this

 14

problem, all unpopulated component areas on the PCB should be covered in
epoxy or removed to prevent probing.

The 64-bit unique serial number associated with each iKey device appears
to be stored in the external EEPROM, whereas the eToken stores its unique
serial number in read-only memory internal to the microprocessor. Storage in
external EEPROM makes it possible to change the serial number, essentially
removing its uniqueness. If the serial number is used in a company's
implementation, this could lead to increased channels of attack.

The iKey allows administrator access using the Master Key (MKEY)
password. Administrator access to the iKey, normally used for initialization
and configuration, will allow all private information stored on the key to be
accessed.

The MKEY is an administrative password that must be known by the
trusted person or program that will initialize and configure the iKey. The
MKEY password is an ASCII string up to 256 characters in length. The default
factory setting is "rainbow" [16]. The ASCII string is MD5-hashed [17], encoded
with a proprietary algorithm, and stored in external memory.

Analysis of the external EEPROM led to the discovery that only the upper
8-bytes of the MD5 hash, hereby referred to as the 'hashed MKEY', are encoded
and stored in external memory with the scheme described in this paper. The
resultant 8-byte encoded value is hereby referred to as the 'obfuscated MKEY'.
Figure 12 shows the steps taken to generate the obfuscated MKEY from the
ASCII-string MKEY password.

MKEY
Password

Hashed MKEY
Obfuscated

MKEY

MD5 Encode

Default: "rainbow" 0xCD13B6A6AF66FB77 0xD2DDB960B0D0F499

Figure 12: MKEY generation, default settings shown below each box.

All PC applications that use the iKey will generate the hashed MKEY

locally before sending it to the iKey device to login. In order to login to the iKey
device, the iKey Application Programming Interface (API) requires the 8-byte
hashed MKEY, not the MKEY password that created it. Administrator access
to the iKey can be gained in two ways:

§ Determine the hashed MKEY from the obfuscated MKEY value which is

stored in the external EEPROM.

§ Encode a new obfuscated MKEY using a new MKEY password string
and store it in the external EEPROM.

The iKey encoding scheme was determined by setting the hashed MKEY to

a known value and observing the resultant obfuscated MKEY, which is located
at address 0x8. After several iterations, it was evident that the scheme is a

 15

series of XORs and additions. Let A be the 8-byte hashed value and B be the 8-
byte obfuscated value. Let Ai be the ith byte of A.

Byte # 1 2 3 4 5 6 7 8

A, Hashed MKEY value, md5("rainbow") = CD13 B6A6 AF66 FB77
B, Obfuscated MKEY value in EEPROM = D2DD B960 B0D0 F499

B1 = A1 XOR 0x1F
B2 = A2 XOR (A1 + 0x01)
B3 = A3 XOR 0x0F
B4 = A4 XOR (A3 + 0x10)
B5 = A5 XOR 0x1F
B6 = A6 XOR (A5 + 0x07)
B7 = A7 XOR 0x0F
B8 = A8 XOR (A7 + 0xF3)

Example: 0xD2 = 0xCD XOR 0x1F

0xDD = 0x13 XOR (0xCD + 0x01)
0xB9 = 0xB6 XOR 0x0F
0x60 = 0xA6 XOR (0xB6 + 0x10)
0xB0 = 0xAF XOR 0x1F
0xD0 = 0x66 XOR (0xAF + 0x07)
0xF4 = 0xFB XOR 0x0F
0x99 = 0x77 XOR (0xFB + 0xF3)

Setting the hashed MKEY to 0x0000000000000000 gave the necessary
information to determine the encoding scheme. Bytes 1, 3, 5, and 7 are simply
XORs with constant values and bytes 2, 4, 6, and 8 are XORs with constant
values added to bytes of the hashed MKEY, as described above.

 Byte # 1 2 3 4 5 6 7 8

A, MKEY = 0000 0000 0000 0000
B, EEPROM MKEY = 1F01 0F10 1F07 0FF3

Once the obfuscated MKEY has been changed to a known value or the
hashed MKEY has been determined, the attacker can login as administrator to
the iKey device and access all of the legitimate user's data. The whole attack as
described above can be completed in less than 2 minutes.

A proof-of-concept tool [8] was developed to demonstrate the following
functions:

§ Retrieve and display configuration data for the inserted iKey.
§ Convert obfuscated MKEY back into hashed MKEY.
§ Login as Administrator using hashed MKEY.
§ Retrieve all public and private data and export the directory hierarchy

to DOS.

 16

The tool expects the 8-byte obfuscated MKEY on the command-line, which
is obtained from reading the external Serial EEPROM with the use of a device
programmer as described earlier in this section. A portion of the console output
is shown below:

C:\>ispy D2DDB960B0D0F499

Magic = 5242544B
DeviceHandle = 80
ClientHandle = 205408
Flags = 20000000
library_version = 2
driver_version = 256
ver_major = 0
ver_minor = 7
prod_code = 54
config = 0
header_size = 8
modulus_size = 0
mem_size = 8168 (bytes)
capabilities = 11
SerialNumber = 0123466A00000249
CheckSum = FAD1
HwInfo = FFFF
MaxPinRetries = 5
CurPinCounter = 5
CreateAccess = 0
DeleteAccess = 0

Obfuscated MKEY = D2 DD B9 60 B0 D0 F4 99 [...`....]
Actual MKEY = CD 13 B6 A6 AF 66 FB 77 [.....f.w]

Attempting iKey Administrator login...

VerifyMasterKey: SUCCESS

dir = 00000000
file = 00000001
dir = 000000C1
file = 000000C1
file = 0000BEEF
dir = 0000FEED

3.3 Electrical Design Variations Between iKey 1000 and 2000

The iKey 2000 was briefly examined to determine the variances between it and
the iKey 1000. The manufacturing processes of iKey 1000 and 2000 are similar.
However, there are slight changes to the iKey 2000 PCB (Figure 13):

 17

§ Microprocessor Package. The package of the microprocessor has been
changed from a Quad Small Outline Package (QSOP) to Small-Outline
Integrated Circuit (SOIC) footprint. The part number has been scratched
off the top of the package, making it difficult to identify. However, a part of
the Cypress logo is still visible on the package, so it can safely be assumed
that the iKey 2000 still uses the Cypress CY7C63101A device, which was
also used in the iKey 1000. This 24-pin device is available in both QSOP
and SOIC footprints.

§ USB Connector. The metal fingers that serve as the USB connector are
soldered onto the PCB on one side. This might be done for a number of
reasons, possibly due to slippage of the PCB underneath the fingers or to
simplify the manufacturing process.

§ Conformal Coating. The conformal coating has been removed from the
microprocessor, which makes access to the pins much easier. Commercial
and homebrew techniques could be used to remove the top of the IC
housing and gain direct access to the die, thus allowing a determined
attacker to extract the firmware of the device [11, 12].

§ External Memory. The package type of the external memory has been
changed. The black, square box on the front side of the circuit board is the
new package, which is the silicon die encapsulated with epoxy, also known
as chip-on-board (COB). The gold pad to the right of the memory is an area
for memory expansion. There are only 8 pads on the footprint, so it can
safely be assumed that the memory remains a Serial EEPROM. Although
the new footprint is harder to probe, the same design flaw exists as the
iKey 1000, in which the pads for the unused memory expansion area are
still accessible.

Figure 13: iKey 2000 PCB 106420-004, top: front, bottom: back.

The pinout of the external memory footprint (Figure 14) was determined by
simple probing of the circuit board and using the iKey 1000 schematic as a
reference. The pinout appears to be similar to that of the Microchip 24LC64
device which was used in the iKey 1000.

 18

MEM
VCC

SDA

SCL
P0.6 (pin 22)

P0.2 (pin 3)

1
2

3
4 5

6

7
8

Figure 14: iKey 2000 unpopulated memory pinout

Three of the pins connected to GND in Figure 14 are most likely the

Address Select Lines, A2, A1, A0, of the Serial EEPROM. Whichever Serial
EEPROM is configured for that address (by hardwiring the pins to a logic high
or low) is selected for use. It appears that the address of the unpopulated device
is 000. If this is so, the actual encapsulated EEPROM could have an address
ranging from 001 – 111 (binary). The external memory attack described in
Section 3.2 has not been attempted on the iKey 2000, though it is believed it
would be successful in reading the contents of the device.

3.4 Electrical Design Recommendations

Developers of security-based products, not limited to token devices of the
nature described in this paper, should consider the following electrical features
for design and manufacture:

§ Conformal Coatings, such as epoxy, help protect critical components

from probing and tampering. Coatings, when implemented correctly and
unless they are easily removed or dissolved by chemicals, serve as a good
deterrent to many attackers. As a benefit to the designer, common attacks
using sulfuric acid to dissolve the epoxy coating will also dissolve the wire-
bonds of an exposed die, thus rendering the device unusable.

§ Microprocessors with Internal Non-Volatile Memory Storage will
deter the casual attacker by requiring advanced techniques, such as de-
lidding and microscopic inspection of the IC die, to determine the data
stored in the memory [11, 12].

§ Non-Standard or Hard-To-Probe Package Types for integrated
circuits, such as ball-grid-array (BGA) or chip-on-board (COB) help deter
the casual attacker, since the pins of the IC are either hidden or difficult to
access.

 19

The major flaw in the iKey design is that the external Serial EEPROM,

which was meant to be protected by the epoxy encapsulation, is still left open to
attack using the unused memory upgrade footprint to access the protected pins.
If a memory upgrade is not present, these pads should be removed or covered in
epoxy to help prevent attack. On the iKey 2000, the pins can also be accessed
from the unprotected pins of the SOIC-packaged Cypress microprocessor.

A temporary fix to the electrical attacks, although it does not remedy the
core problem, is to be very aware of the physical security and location of the key
at all times. The owner of the key should not leave the key unattended or loan
it to a potentially untrustworthy colleague. If the key is unattended for any
amount of time, the data could be compromised with the methods described in
this paper.

4 Software Attack

Software attacks are considered non-invasive attacks in which the device is not
harmed or physically tampered with. Non-invasive and software attacks often,
but not always, make use of the normal operating conditions of the device and
are aimed to find flaws in the implementation of the software or firmware in a
product. Once the attack is designed and successful, the results are
reproducible from one device to another.
 The attacks chosen for the USB key investigation fell into two distinct
areas:

§ Examine the communication channels between the USB device and

host computer, using custom device drivers and commercial USB protocol
analyzers, and look for undocumented commands and problems with
handling intentionally erroneous and mis-structured commands.

§ Analyze and determine the possibility to brute-force a password
which will give access to the USB key device (i.e., the Administrator's
MKEY value or the legitimate user's password or PIN).

 The source code and header files included with the vendor-provided software
development kits (SDK) contain a lot of interesting information about the
design and structure of the device and API in question. For example, the PC
software included in the eToken SDK prints Windows debugging messages.
These messages contain bits and pieces of the Serial EEPROM contents of the
key and may be leaking secret or private information.
 Not all of the attacks described in this section have been completed. Rather,
they are indicative of attacks which might yield interesting information about
the design of the USB keys.

 20

4.1 USB Protocol Analyzers

A number of commercial tools exist to aid in the designing and debugging of
USB devices. These tools, ranging in rental cost up to $3290 per month and
retail price of up to $25K, allow detailed analysis, trace, and storage of protocol
traffic. Some models allow the generation of traffic onto the USB bus which can
contain both legal packets per the USB standard [18] and illegal packets, thus
enabling stress/limit testing of USB-based designs, and observation of design
behavior under faulty bus conditions.

4.1.1 Undocumented Commands

It is possible that these USB keys have undocumented command sets. During
the development phase, it is common to need access to the Serial EEPROM
data on a regular basis. The use of software commands to allow this would
avoid the need of additional device programmer hardware and resources.

Currently, with the electrical attacks described in Section 3, it is possible
to obtain the entire contents of the device by physically opening it and reading
its contents with a device programmer. It would be useful to find a command
that would dump the entire contents of the Serial EEPROM, used for storage of
all public and private data, back through the USB port and bypass any private-
memory restrictions. By searching through any undocumented USB commands,
it may allow one to obtain all possible information and data from the USB key
without physical tampering. The search was not performed on any of the
devices, but the attack methodology is as follows:

1. Analyze typical data transactions between the host PC and the USB

key. This will allow us to see how the commands and data are structured in
the USB packet.

2. Send custom, legal USB packets making use of the traffic generation
features of the USB protocol analyzer. The custom packets will be in the
form that was obtained in Action 1, replacing the command data each time.
By linearly advancing through the entire command keyspace (i.e., 0x0000 to
0xFFFF if the command structure is 2 bytes), we will be able to detect any
hidden commands.

3. Monitor the data being transmitted from the USB key. Look for the
response in which most or all of the contents of the Serial EEPROM are
being transmitted back to the host PC, or any response that isn't defined in
the standard API or command-set of the device.

4.1.2 Illegal USB Packets

By sending incorrect and known erroneous USB packets to the USB key, it may
leak information such as the contents of protected memory areas. This

 21

experiment is similar to Section 4.1.1, except the packets generated will be
deliberately illegal USB packets not conforming to the USB standard.

1. Send illegally-structured USB packets making use of the traffic

generation features of the USB protocol analyzer. Changing any of the
fields in the USB packet could potentially lead to unintended leakage of
information.

2. Monitor the data being transmitted from the USB key. Look for
interesting responses and information that aren't defined in the standard
API or command-set of the device.

4.2 MKEY Timing Attack with iKey 1000

The API function responsible for MKEY authentication, RnbTkn_
VerifyMasterKey, takes an 8-byte char array and encodes and compares this
against the obfuscated MKEY stored in the iKey. There are no counters or
limits designed to prevent brute-force attacks on the MKEY value. However,
there are 264 possible values, making typical brute-force methods infeasible.
Because the Cypress CY7C63000-family of microprocessor is an 8-bit device,
meaning all registers and operation codes are handled in 8-bit chunks, it is
theorized that timing attacks could aid in determining the MKEY value in
shorter time.

When an 8-bit processor needs to compare two 64-bit numbers (defined
herein as Ai and Bi, where i is each byte ranging from 1 to 8), it is achieved by
first comparing A1 with B 1. If they match, A2 and B2 will be compared, and so
on until the entire value has been compared (Figure 15).

 22

Let a, b = 8-byte value
i = 1

a_i == b_i

Yes

No

Increment i

i > 8
No

Yes

a == b

a != b

Figure 15: Comparing two 64-bit values on an 8-bit microprocessor

Using this process, it is possible to use time measurements to determine
how close the guessed MKEY value is to the correct MKEY value. The more
bytes that match, the longer the compare routine will take. If the routine
returns quickly, it can be assumed that the bytes being compared do not match.
This greatly reduces the amount of time necessary for a brute-force attack,
since the 8-byte values are being compared on a byte-by-byte basis and the
correct value of one byte will be successfully guessed before moving on to the
next.

As it happens, the latency times of the device drivers on the Windows
operating system are too large to get accurate timing measurements from the
USB key. It takes too long for the USB command to reach the key and for its
response to get back to the Windows application. Because of this, we developed
custom device drivers and kernel module for use with the Linux operating
system. These custom components allow for a more directed control of the
device thus reducing the time delay between the sending of the USB command
and the reception of the command by the USB key. It may be possible to further
reduce the latency by using the traffic generation on a USB protocol analyzer,
which would allow commands to be sent directly to the key without relying on
any drivers or operating system software.

However, this attack is more complicated in that a RnbTkn_GetResults API
function must be called to retrieve the results of the last operation
(RnbTkn_VerifyMasterKey, in the case of this attack). Due to the device driver
latency and the need to call a second function to retrieve the compare result, it
is difficult to measure how long a compare operation really takes to complete.

 23

Timing attacks are well known and have been used against other cryptographic
systems [19].

4.3 Software Design Recommendations

In relation to the attacks described in this section, the following programming
practices should be considered:

§ Remove all undocumented commands, debug symbols and

development functions. All functionality not used or needed in the
production unit should be completely removed from the firmware.

§ Protect against malformed and illegal USB packets. The software is
in control of interpreting the USB device requests and responding correctly
to them. Make sure the device does not leak critical information or enter an
unintentional state if a deliberately incorrect USB packet is sent to it.
Verification of proper handling can be verified by using a USB protocol
analyzer to generate intentionally bad packets.

§ Design each routine to take a constant amount of time. Any critical
function calls (such as RnbTkn_ VerifyMasterKey described in the previous
section) should take a constant amount of time to complete regardless of
the result of the operation. This will prevent timing attacks from being
successful in determining passwords or other critical information.

5 Conclusions

Users must be aware that at today's level of delivered products, private data
can be accessed from USB keys without having legitimate credentials. If a user
loses their USB key, all data should be considered to have been potentially
compromised and proper action should be taken.

This paper described and detailed a number of practical and theoretical
attacks related to the mechanical, electrical, and software aspects of the USB
keys. These attacks are not meant only for USB keys and could be expanded
upon and attempted on other products. There are flaws in the existing USB
hardware tokens on the market today, and users must recognize the security
risks and benefits of each tool before it is recommended and implemented into
their infrastructure. Some of these flaws can be worked around, but only after
the weaknesses have been identified. It is important for designers of hardware
devices, especially security products, to fully understand the threat model of
their particular product before implementing a solution.

 24

Acknowledgements

Thanks to DilDog and Brian Carrier (software attack ideas and cryptanalysis),
and Dan Geer, Mudge, @stake Research Labs and Nybor (editing and peer
review).

References

1. Clark, Andrew J., "Physical Protection of Cryptographic Devices", Eurocrypt:

Advances in Cryptography, April 1987, pp. 83-93.
2. Chaum, D., "Design Concepts for Tamper Responding Systems", Crypto 1983, pp.

387-392.
3. Weingart, S.H., White, S.R., Arnold, W.C., Double, G.P., "An Evaluation System for

the Physical Security of Computing Systems", Sixth Annual Computer Security
Applications Conference 1990, pp. 232-243.

4. Aladdin Knowledge Systems eToken Web Page, http://www.ealaddin.com/etoken.
5. Rainbow Technologies iKey 1000 Web Page, http://ikey.rainbow.com.
6. Rainbow Technologies iKey 2000 Web Page, http://www.rainbow.com/ikey2000/

index.html.
7. Kingpin, @stake Security Advisory, "eToken Private Information Extraction and

Physical Attack", http://www.atstake.com/research/advisories/2000/etoken-piepa.txt.
8. Kingpin, @stake Security Advisory, "iKey 1000 Administrator Access and Data

Compromise", http://www.atstake.com/research/advisories/2000/ikey-admin. txt.
9. Needham's Electronics Device Programmer Web Page, http://www.needhams.com.
10. Cypress Semiconductor CY7C63000-family Web Page, http://www.cypress.com/

cypress/prodgate/usb/cy7c63000a.html.
11. F. Beck, "Integrated Circuit Failure Analysis – A Guide to Preparation Techniques",

John Wiley & Sons, 1998.
12. O. Kömmerling and M. Kuhn, "Design Principles for Tamper-Resistant Smartcard

Processors," USENIX Workshop on Smartcard Technology Proceedings, May 1999.
13. Atmel Web Page, http://www.atmel.com.
14. Aladdin Knowledge Systems eToken Developer's Guide, November 1999, pg. 36.
15. Microchip Technology Web Page, http://www.microchip.com.
16. Rainbow Technologies iKey PowerTools Plus Manual, May 1999, pg. 3.
17. MD5 Message-Digest Algorithm RFC-1321, ftp://ftp.isi.edu/in-notes/ rfc1321.txt.
18. Universal Serial Bus Specification Revision 1.1, http://www.usb.org/developers/

data/usbspec.zip.
19. P. Kocher, Cryptography Research, Inc., "Timing Attacks on Implementations of

Diffie -Hellman, RSA, DSS, and Other Systems", http://www.cryptography.com/
timingattack.

Appendix A Additional Resources

1. USB Implementers Forum Web Page, http://www.usb.org.
2. B & G International IC Decapsulation Products Web Page, http://www.bgintl.com/

dcap.html.
3. CATC USB Bus & Protocol Analyzers Web Page, http://www.catc.com/

products.html#USBDevTools.

