Advanced Hardware Hacking Techniques

DEFCON 12
Friday, July 30

Joe Grand (Kingpin)
joe@grandideastudio.com
Agenda

- The "What" and "Why" of Hardware Hacking
- Enclosure & Mechanical Attacks
- Electrical Attacks
- Final Thoughts and Conclusions
What is Hardware Hacking (to me)?

- Doing something with a piece of hardware that has never been done before
 - Personalization and customization (e.g., "hot rodding for geeks")
 - Adding functionality
 - Capacity or performance increase
 - Defeating protection and security mechanisms (not for profit)

- Creating something extraordinary
- Harming nobody in the process
Why Hardware Hacking?

• Curiosity
 - To see how things work

• Improvement and Innovation
 - Make products better/cooler
 - Some products are sold to you intentionally limited or "crippled"

• Consumer Protection
 - I don't trust glossy marketing brochures...do you?
Hardware Security Myths

- Many security-related products rely on misconceptions to remain "secure"
- Hardware hacking is hard
- Consumers lack the competency or courage to void their warranty
- Therefore, hardware is "safe"
Gaining Access to a Product

- **Purchase**
 - Buy the product from a retail outlet (with cash)

- **Evaluation**
 - Rent or borrow the product

- **Active**
 - Product is in active operation, not owned by attacker

- **Remote Access**
 - No physical access to product, attacks launched remotely
Attack Vectors

- **Interception (or Eavesdropping)**
 - Gain access to protected information without opening the product
- ** Interruption (or Fault Generation)**
 - Preventing the product from functioning normally
- ** Modification**
 - Tampering with the product, typically invasive
- ** Fabrication**
 - Creating counterfeit assets of a product
Enclosure & Mechanical Attacks

- Opening Housings
- External Interfaces
- Anti-Tamper Mechanisms
- Conformal Coating and Epoxy Encapsulation Removal
Opening Housings

- Goal is to get access to internal circuitry
- Usually as easy as loosening some screws or prying open the device
Opening Housings 2

- If glue is used to seal housing, use heat gun to soften glue and pry open with a knife
 - Some designers use glue with a high-melting point - enclosure will melt/deform before the glue does
- Some devices are sonically-welded to create a one-piece outer shell
 - If done properly, will require destruction of device in order to open it
Opening Housings 3

- Security bits and one-way screws
 - Used to prevent housings from being easily opened
 - Ex.: Bathroom stalls, 3.8mm and 4.5mm security bit for Nintendo and Sega game cartridges/systems
 - To identify a particular bit type, visit www.lara.com/reviews/screwtypes.htm
 - Bits available at electronics stores, swapmeets, online
External Interfaces

• Usually a product's lifeline to the outside world
 - Manufacturing tests, field programming/upgrading, peripheral connections
 - Ex.: JTAG, RS232, USB, Firewire, Ethernet

• Wireless interfaces also at risk (though not discussed here)
 - Ex.: 802.11b, Bluetooth

• Any interface that connects to a third-party may contain information that is useful for an attack
 - Could possibly obtain data, secrets, etc.
External Interfaces 2

- Look for obfuscated interfaces
 - Ex.: Proprietary or out-of-the-ordinary connector types, hidden access doors or holes
- Many times, test points just hidden by a sticker
External Interfaces 3

- Use multimeter or oscilloscope to probe and determine functionality
 - Logic state of pins can help with an educated guess
 - Ex.: Pull pins high or low, observe results, repeat
- Monitor communications using H/W or S/W-based protocol analyzer
 - USB: SnoopyPro, SourceUSB
 - RS232 and parallel port: PortMon
- Send intentionally malformed/bad packets to cause a fault
 - If firmware doesn't handle this right, device could trigger unintended operation useful for an attack
External Interfaces: Backdoors

- Architecture-specific debug and test interfaces (usually undocumented)
- Diagnostic serial ports
 - Provides information about system, could also be used for administration
 - Ex.: Intel NetStructure crypto accelerator administrator access [1]
- Developer's backdoors
 - Commonly seen on networking equipment, telephone switches
 - Ex.: Palm OS debug mode [2]
 - Ex.: Sega Dreamcast CD-ROM boot
External Interfaces: JTAG

- JTAG (IEEE 1149.1) interface is often the Achilles' heel
- Industry-standard interface for testing and debugging
 - Ex.: System-level testing, boundary-scanning, and low-level testing of dies and components
- Can provide a direct interface to hardware
 - Has become a common attack vector
 - Ex.: Flash memory reprogramming on Pocket PC devices (www.xda-developers.com/jtag)
External Interfaces: JTAG 2

- Five connections (4 required, 1 optional):
 - TDO = Data Out (from target device)
 - TDI = Data In (to target device)
 - TMS = Test Mode Select
 - TCK = Test Clock
 - /TRST = Test Reset (optional)

- H/W interface to PC can be built with a few dollars of off-the-shelf components
External Interfaces: JTAG 3

- JTAG Tools (http://openwince.sourceforge.net/jtag) serves as the S/W interface on the PC.
- Removing JTAG functionality from a device is difficult:
 - Designers usually obfuscate traces, cut traces, or blow fuses, all of which can be repaired by an attacker.
Anti-Tamper Mechanisms

- Primary facet of physical security for embedded systems
- Attempts to prevent unauthorized physical or electronic tampering against the product
- Most effectively used in layers
- Possibly bypassed with knowledge of method
 - Purchase one or two devices to serve as "sacrificial lambs"
Anti-Tamper Mechanisms 2

• Tamper Resistance
 - Specialized materials used to make tampering difficult
 - Ex.: One-way screws, epoxy encapsulation, sealed housings

• Tamper Evidence
 - Ensure that there is visible evidence left behind by tampering
 - Only successful if a process is in place to check for deformity
 - Ex.: Passive detectors (seals, tapes, glues), special enclosure finishes (brittle packages, crazed aluminum, bleeding paint)
Anti-Tamper Mechanisms 3

- Tamper Detection
 - Enable the hardware device to be aware of tampering
 - Switches: Detect the opening of a device, breach of security boundary, or movement of a component
 - Sensors: Detect an operational or environmental change
 - Circuitry: Detect a puncture, break, or attempted modification of the security envelope
Anti-Tamper Mechanisms 4

• Tamper Response
 - Countermeasures taken upon the detection of tampering
 - Ex.: Zeroize critical memory, shutdown/disable/destroy device, enable logging features

• *Physical Security Devices for Computer Subsystems* [3] provides comprehensive attacks and countermeasures
 - Ex.: Probing, machining, electrical attacks, physical barriers, tamper evident solutions, sensors, response technologies
Conformal Coating and Epoxy Encapsulation Removal

- Encapsulation used to protect circuitry from moisture, dust, mold, corrosion, or arcing
- Epoxy or urethane coatings leave a hard, difficult to remove film
Conformal Coating and Epoxy Encapsulation Removal 2

- The good news: The coatings are not specifically designed for security
 - Can usually be bypassed with special chemicals like MG Chemicals' 8310 Conformal Coating Stripper (www.mgchemicals.com)

- Brute force approach: Dremel tool and wooden skewer as a drill bit
 - Doesn't damage the components underneath coating
 - Might remove the soldermask, but not a big deal...
When all else fails, use X-ray to determine location of components or connections.
Electrical Attacks

- Surface Mount Devices
- Probing Boards
- Memory and Programmable Logic
- Chip Delidding and Die Analysis
- Emissions and Side-Channel Attacks
- Clock and Timing
Surface Mount Devices

- Harder to work with than through-hole devices
 - Ex.: Fine-pitched packages, tiny discrete components
 - Don't get discouraged
- Human hands have more resolution than the naked eye can resolve
 - A microscope can go a long way to solder components
- Circuit Cellar, July 2004: Build your own computer-controlled, temperature-adjusting SMT oven
Surface Mount Devices 2

- Easy to desolder using ChipQuik SMD Removal Kit (www.chipquik.com)
Probing Boards

- Look for test points and exposed traces/bus lines
- Surface mount leads and points are usually too small to manually probe
- Many ways to access:
 - Solder probe wire onto board using microscope
 - Use an SMD micrograbber ($5-$50)
 - Build your own probe
Probing Boards 2

- Ex.: Tap board used to intercept data transfer over Xbox's HyperTransport bus [4]
Memory and Programmable Logic

- Most memory is notoriously insecure
 - Not designed with security in mind
 - Serial EEPROMs can be read in-circuit, usually SPI or \(I^2C\) bus (serial clock and data) [5]

- Difficult to securely and totally erase data from RAM and non-volatile memory [6]
 - Remnants may exist and be retrievable from devices long after power is removed
 - Could be useful to obtain program code, temporary data, crypto keys, etc.
Memory and Programmable Logic 2

- SRAM-based FPGAs most vulnerable to attack
 - Must load configuration from external memory
 - Bit stream can be monitored to retrieve entire configuration
- To determine PLD functionality, try an I/O scan attack
 - Cycle through all possible combinations of inputs to determine outputs
Memory and Programmable Logic 3

- Security fuses and boot-block protection
 - Enabled for "write-once" access to a memory area or to prevent full read back
 - Usually implemented in any decent design
 - Might be bypassed with die analysis attacks (FIB) or electrical faults [7]
 - Ex.: PIC16C84 attack in which security bit is removed by increasing VCC during repeated write accesses
Chip Decapping and Die Analysis

- Analysis of Integrated Circuit (IC) dies is typically the most difficult area for hardware hacking
- With access to the IC die, you can:
 - Retrieve contents of Flash, ROM, FPGAs, other non-volatile devices (firmware and crypto keys stored here)
 - Modify or destroy gates and other silicon structures (e.g., reconnect a security fuse that prevents reading of the device)
The good thing is that IC designers make mistakes, so tools are needed
 - Failure analysis
 - Chip repair and inspection

What tools?
 - Chip Decappers
 - Scanning Electron Microscope (SEM)
 - Voltage Contrast Microscopy
 - Focused Ion Beam (FIB)
Chip Decapping and Die Analysis 3

- Equipment available on the used/surplus market
- Access to tools in most any large academic institution
- Reverse engineering and analysis services exist (still high priced, $10k-$20k)
 - Can provide functional investigation, extraction, IC simulation, analyze semiconductor processes, etc.
 - Ex.: Semiconductor Insights (www.semiconductor.com) and Chipworks (www.chipworks.com)
Chip Decapping and Die Analysis: IC Decapsulation

- Decapsulation tools used to "delid" or "decap" the top of the IC housing
- Uses chemical or mechanical means (or both)
- Will keep the silicon die intact while removing the outer material
- Ex.: Nippon Scientific (www.nscnet.co.jp/e), Nisene Technology Group (www.nisene.com), ULTRA TEC Manufacturing (www.ultratecusa.com), approx. $30k new, $15k used
Chip Decapping and Die Analysis: Scanning Electron Microscope

- Used to perform sub-micron inspection of the physical die
- Metal or other material layers might need to be de-processed before access to gate structures
- Depending on ROM size and properties, can visually recreate contents

(Photos from ADSR Ltd. and FIB International)
Chip Decapping and Die Analysis: Voltage Contrast Microscopy

- Detect variances of voltages and display them as contrast images
 - Performed with a SEM
- Ex.: Could extract information from a Flash ROM storage cell

(Photo from http://testequipmentcanada.com/VoltageContrastPaper.html)
Chip Decapping and Die Analysis: Focused Ion Beams

- Send a focused stream of ions onto the surface of the chip
 - Beam current and optional use of gas/vapor changes the function
- Cutting
 - Ex.: Cut a bond pad or trace from the die ($1k-$10k)
- Deposition
 - Ex.: Add a jumper/reconnect a trace on the die ($1k-$10k)
Chip Decapping and Die Analysis: Focused Ion Beams 2

- Imaging
 - High-resolution image of die structure
- Ex.: Fibics Incorporated (www.fibics.com) or FIB International (www.fibinternational.com)

(Photos from Fibics Incorporated)
Chip Decapping and Die Analysis: Focused Ion Beams 3

(Photos from Fibics Incorporated)
Emissions and Side-Channel Attacks

- All devices leak information
 - EMI (electromagnetic interference) from circuits (TEMPEST) [8, 9]
 - Power supply fluctuations
 - Visible radiation from LEDs and monitors [10, 11]
- Can be monitored and used by attacker to determine secret information
- Devices may also be susceptible to RF or ESD (immunity)
 - Intentionally injected to cause failure
Emissions and Side-Channel Attacks: Power Supply

- **Simple Power Analysis (SPA)**
 - Attacker directly observes power consumption
 - Varies based on microprocessor operation
 - Easy to identify intensive functions (cryptographic)

- **Differential Power Analysis (DPA) [12]**
 - Advanced mathematical methods to determine secret information on a device
Clock and Timing

- Attacks rely on changing or measuring timing characteristics of the system
- Active (Invasive) timing attacks
 - Vary clock (speed up or slow down) to induce failure or unintended operation
- Passive timing attacks
 - Non-invasive measurements of computation time
 - Different tasks take different amounts of time
"Security through obscurity" does not work
- Provides a false sense of security to designers/users
- Might temporarily discouraged an attacker, but it only takes one to discover it

Weak tactics to look out for when hacking "secure" hardware products:
- Encoded forms of fixed data
- Scrambled address lines through extra logic
- Intentionally messy/ousy code
- Spurious and meaningless data ("signal decoys")
Hardware Hacking Challenges

- Advances in chip packaging
 - Ultra-fine pitch and chip-scale packaging (e.g., BGA, COB, CIB)
 - Not as easy to access pins/connections to probe
 - Discrete components can now easily be inhaled
- Highly-integrated chips (sub-micron)
 - Difficult, but not impossible, to probe and modify
- High speed boards
 - Processor and memory bus > hundreds of MHz
 - Serial bus speeds approaching Gigabit/sec.
Hardware Hacking Challenges 2

• Cost of equipment
 - Advanced tools still beyond the reach of average hobbyist (probing, decapping, SEMs, etc.)
 - "State of the art" defined by what hackers can find in the trash and at swapmeets

• Societal pressures
 - Hardware hacking is practically becoming mainstream, but "hacker" is still a naughty word
Conclusions

- Hardware hacking is approaching a mainstream activity
- Plays an important role in the balance between consumers and corporations (e.g., The Man)
- Think as a designer would
- Nothing is ever 100% secure
 - Given enough time, resources, and motivation, you can break anything
- The possibilities are endless
- Have fun!
References

7. S. Skorobogatov, "Breaking Copy Protection in Microcontrollers,"
 www.cl.cam.ac.uk/~sps32/mcu_lock.html

 www.jya.com/emr.pdf

9. J.R. Rao and P. Rohatgi, "EMPowering Side-Channel Attacks," IBM Research Center,
 www.research.ibm.com/intsec/emf-paper.ps

10. J. Loughry and D.A. Umphress, "Information Leakage from Optical Emanations,"
 ACM Transactions on Information and System Security v.5, #3, August 2002,
 www.applied-math.org/optical_tempest.pdf

11. M. Kuhn, "Optical Time-Domain Eavesdropping Risks of CRT Displays,"
 www.cl.cam.ac.uk/~mgk25/ieee02-optical.pdf

 www.cryptography.com/resources/whitepapers/DPATechInfo.PDF
Appendix A: Additional Resources

Appendix B: Related Web Sites

- Roomba Community - Discussing and Dissecting the Roomba, www.roombacommunity.com
- TiVo Techies, www.tivotechie.com
Appendix C: Tools of the Warranty Voiding Trade

- Bright overhead lighting or desk lamp
- Protective gear (mask, goggles, rubber gloves, smock, etc.)
- ESD protection (anti-static mat and wriststrap)
- Screwdrivers
- X-ACTO hobby knife
- Dremel tool
- Needle file set
Appendix C: Tools of the Warranty Voiding Trade 2

- Wire brushes
- Sandpaper
- Glue
- Tape
- Cleaning supplies
- Variable-speed cordless drill w/ drill bits
- Heat gun and heat-shrink tubing
- Center punch
Appendix C: Tools of the Warranty Voiding Trade 3

- Nibbling tool
- Jigsaw
- Wire stripper/clipper
- Needle-nose pliers
- Tweezers
- Soldering iron w/ accessories (solder sucker, various tips, etc.)
- Basic electronic components
Appendix C: Tools of the Warranty Voiding Trade 4

- Microscope
- Digital and analog multimeters
- Adjustable power supply
- Device programmer
- UV EPROM eraser
- PCB etching kit
- Oscilloscope
- Logic Analyzer
Appendix D: Where to Obtain the Tools

- The Home Depot (www.homedepot.com)
- Lowe's (www.lowes.com)
- Hobby Lobby (www.hobbylobby.com)
- McMaster-Carr (www.mcmaster.com)
- Radio Shack (www.radioshack.com)
- Digi-Key (www.digikey.com)
- Contact East (www.contacteast.com)
- Test Equity (www.testequity.com)
Thanks!

Joe Grand (Kingpin)
joelgrandideastudio.com